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ABSTRACT

We introduce methods for visualization of data structured along trees, especially hierarchically structured
collections of time series. To this end, we identify questions that often emerge when working with hierarchi-
cal data and provide an R package to simplify their investigation. Our key contribution is the adaptation of
the visualization principles of focus-plus-context and linking to the study of tree-structured data. Our moti-
vating application is to the analysis of bacterial time series, where an evolutionary tree relating bacteria is
available a priori. However, we have identified common problem types where, if a tree is not directly avail-
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able, it can be constructed from data and then studied using our techniques. We perform detailed case stud-
ies to describe the alternative use cases, interpretations, and utility of the proposed visualization methods.

1. Introduction

We introduce methods for visualization of data structured
along trees, especially hierarchically structured collections of
time series. We hope both to characterize generically useful
techniques for interactively visualizing hierarchical data and to
offer practical tools for implementing such displays. To this end,
we identify questions that often emerge when working with
hierarchical data and provide an R package to simplify their
investigation (R Core Team 2016).

In particular, we adapt the visualization principles of focus-
plus-context and linking to the study of tree-structured data
(Buja et al. 1996; Becker and Cleveland 1987). Our motivating
application is to the analysis of bacterial time series, where an
evolutionary tree relating bacteria is available a priori. However,
we have identified common problem types where, if a tree is not
directly available, it can be constructed from data and then stud-
ied using our techniques.

We have implemented our visualizations in D3, but encapsu-
lated in an R package, called treelapse, to facilitate rapid turnover
from data preparation and modeling to interactive exploration,
and vice versa. Our code is open-source and is linked in the
supplementary materials. We hope this package encourages data
analysts to work at the border between data modeling and visu-
alization, and more generally empowers a wider audience to
apply less widely known, but powerful, visualization ideas.

In summary, our key contributions are

® Proposals for visualizing hierarchically structured

data, based on principles from the data visualization
community.

¢ The implementation of these proposals in a publicly avail-

able R package.

¢ The illustration of the wide reach of hierarchical data visu-

alization, through case studies in both scientific and soci-
etal contexts.

The article is organized as follows. First, we describe our
motivating application to the microbiome and the associated
generic analysis tasks. Next, we review the underlying visualiza-
tion principles behind our contributions. Then, we then connect
these principles to analysis tasks we identified earlier, describ-
ing in detail the visualization methods we have implemented in
treelapse. We close with several case studies using publicly avail-
able data across both microbiome and non-microbiome related
applications.

1.1. Problem Motivation

A microbiome is a community of bacteria living in given envi-
ronments, for example, ocean water or the human gut (Human
Microbiome Project Consortium 2012; Cho and Blaser 2012).
Progress in the field has been rapidly accelerated by the advent
of genomic technologies, which enable detailed quantification
of bacterial ecological structure and its influence in human
and environmental health. Being concerned with both bacterial
community structure and human health, the field exists at the
border between ecology and medicine; consequently, papers in
the area often apply a blend of exploratory data analysis and for-
mal statistical inference.

The two essential microbiome analysis problems that
motivated our work are the tree-structured differential abun-
dance and differential dynamics problems. In the differential
abundance problem, we attempt to compare the abundances
of individual bacteria across experimental conditions—for
example, treatment vs. control or healthy vs. diseased. This is
the microbiome analog of differential expression analysis in
genomics (Anders and Huber 2010). We prepend the descrip-
tion “tree-structured” because, in practice, researchers generate
interpretations about intermediate taxonomic orders—it is
more interesting to discover novel behavior taxonomic levels
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between high-order phyla and low-level species. Hence, we
frame the tree-structured differential abundance problem as
the question of identifying the largest taxonomic subtree whose
associated bacteria are differentially abundant.

In the tree-structured bacterial dynamics problem, the goal is
to describe changes in bacterial abundances in an environment
over time. As in the differential abundance problem, it is useful
if these descriptions can be given at the highest subtree at which
the pattern appears. Specific questions of interest often have an
ecological flavor. For example, researchers are often interested
in understanding how bacterial populations respond to sudden
or gradual environmental changes or how species fill, drop out
from, or compete for environmental niches. Medically, these
questions are important for illuminating the impact of antibi-
otic time courses or diet changes, for example.

1.2. Problem Abstraction

To unify the tree-structured differential abundance and bacte-
rial dynamics problems, we identify the data with a collection
of random variables indexed by nodes in a prespecified tree
structure. In the differential abundance problem, each random
variable lives in R® where G is the number of groups being
compared. Each coordinate represents the abundance for that
group, and a node exhibits differential abundance when the
coordinates are drawn from different distributions. On the
other hand, in the bacterial dynamics problem, each random
variable is a time series, living in R”.

In both of these applications, we constrain the values of par-
ent nodes according to the value of the children nodes: we
define the value at each node to be either the sum or aver-
age of all descendant tips. However, it is possible to imagine
situations where the internal nodes are drawn from their own
distribution, unconstrained by descendants. In general, analy-
sis in this abstraction focuses on describing the distribution of
these random variables as a function of their position across
subsets of the tree. The essential difficulty in these problems is
high-dimensionality—there are many tree nodes, each holding
a vector-valued random variable. Even simply navigating across
the tree and comparing coordinates in the observed variables is
a challenge; ideally, we could construct a succinct representation
of the essential covariation across subtrees and coordinates.

This framework suggests other potential application areas,
not all of which have a priori known tree structures. For exam-
ple, collections of spatially-indexed time series are frequently
encountered in practice—consider energy consumption, prod-
uct sales, or high school dropout rates across regional districts.
This type of data has an implicit tree structure—at the top
level are different states, while at the bottom are individual
census tracts, say. Analysis here revolves around the question of
how variation across time series is related to their geographic
position.

Alternatively, if this type of hierarchical contextual informa-
tion is not directly available, a tree structure can be learned from
the data. This could be achieved by learning a hierarchical clus-
tering on the original series. Further, if contextual information is
available, but it is not hierarchical, it is possible to setup a super-
vised problem that uses context to predict features of the time

series. We can construct a tree by applying a tree-based classi-
fier (Breiman et al. 1984) or extracting a regression tree from a
more complex supervised model (Boz 2002; Saito and Nakano
2002). Analysis then focuses on how different partitions of the
contextual, covariate space relate to observed time series.

Finally, note that, while we have focused on time series val-
ued nodes, all of this discussion could be translated to study-
ing high-dimensional data via parallel coordinates (Inselberg
and Dimsdale 1991). The usual parallel coordinates challenges
remain, mainly selecting scales for and ordering across the dif-
ferent coordinates, but the linking and focus-plus-context can
still be employed this setting.

1.3. Background Literature and Solution Principles

Now that we have specified the essential questions of inter-
est, we survey some ideas from the visualization literature that
can be applied to answer them. As the core difficulty is high-
dimensionality, it should be no surprise that the techniques
we adapt come from the literature on high-dimensional data
visualization, which has enjoyed rapid progress in the last 25
years. Modern research in this domain develops abstractions
and taxonomies for guiding visualization designs so that they
most effectively communicates properties of the data to their
intended audience. A major push in this body of work explores
the potential for interactivity to improve many stages of the data
analysis process, from preliminary data preparation, to refine-
ment and navigation across views, to final sharing and annota-
tion of results (Heer et al. 2012). Further work has attempted to
bridge the gap between statistical analysis and data visualization
methodology, both of which provide techniques for learning
from high-dimensional data (De Oliveira and Levkowitz 2003).

The problem structures most relevant to our study are tree
and temporal structure, and the visualization community has
various ways of reasoning about these data, see (Graham and
Kennedy 2010; Aigner et al. 2011) for detailed surveys. From this
literature, our approach is most directly informed by the focus-
plus context and linking principles, which we briefly review
here. The focus-plus-context principle is that large collections
of visual elements can be studied at multiple scales, by simulta-
neously focusing” on a few elements of interest and maintaining
the “context” of the coarser-scale background. A simple exam-
ple of this idea is to include a search box that highlights match-
ing samples (focus) and mutes the rest (context). Two more
sophisticated methods anchored in this idea are timeboxes and
degree-of-interest (DOI) trees; both are central to the propos-
als in treelapse (Hochheiser and Shneiderman 2004; Heer and
Card 2004). In timeboxes, a collection of time series are graphi-
cally queried using interactive brushes. Series that pass through
all of the user-specified brushes are highlighted, and the rest are
faded to the background. Hence, time series meeting the con-
straints imposed by the brushes are focused, while the remain-
der are de-emphasized, though they remain present as context.
This method can be interpreted programmatically as the visual
analog of a database query, or probabilistically as the conditional
distribution for the full series, given it passes through certain
bounds.

In DOI trees, the viewer’s attention is focused on a collec-
tion of high-interest nodes, while the remaining lower-interest



nodes are left on the fringes as context. The implementation is
modularized into two tasks—the determination of a DOI distri-
bution over nodes in the tree and visual layout of a tree given
DOI assignments. The DOI distribution used by Heer and Card
(2004) places maximal interest on the node that the user had
most recently clicked, along with all ancestors. The DOI for
all other nodes is defined as the distance to the closest maxi-
mal interest node. The layout step then trims low-interest sub-
trees until the remaining nodes fit within a given screen size. By
adjusting the minimal DOI below which nodes are hidden, the
user can transition between node-specific and full-tree scales.

In linking, alternative representations of the same samples are
placed side-by-side to display covariation across views. A canon-
ical application is to linked scatterplot brushing (Becker and
Cleveland 1987). Here, a scatterplot matrix gives the relation-
ship between all pairs of variables. Points brushed in one scat-
terplot are then highlighted in all others. For example, this helps
the user determine whether an outlier in one dimension is an
outlier in others. Another instance of this idea links the results
of dimensionality reduction methods to displays of the raw data,
as implemented by XGobi and Cranvas, for example (Xie et al.
2013; Swayne et al. 1998). As in timeboxes, linking can be inter-
preted as database queries or conditional probabilities: given a
subset of the series after conditioning on the values for one set
of features, what are the values for a second set (Buja et al. 1996)?

Finally, unrelated to established visualization principles, we
note that our work is deliberately grounded in the R soft-
ware ecosystem. This connection is made using the htmlwidgets
package (Vaidyanathan et al. 2014). Not only does linking R with
D3 make these visualization methods more broadly accessible,
we hope to facilitate exchange between data modeling and inter-
active visualization. Moreover, our tools are intentionally lim-
ited in scope—designed to facilitate this dialog for a specific class
of problems, rather than providing a toolbox for generic types of
visualization design. We believe that this narrow context within
abroad ecosystem strikes a balance between problem-specificity
and ease-of-use.

1.4. Specific Proposals

Our first proposed visualization technique is a minor modifica-
tion of the DOI tree. The standard DOI tree definition does not
have any notion of data defined at nodes, it is only used a device
for navigating tree structures. A trivial extension can encode
scalar data at nodes: have the node radius reflect the associated
scalar value. To reinforce this effect, we can adjust the width of
the parent edge. When parent nodes have values equal to the
sum of their children, this creates the effect of values “flowing”
from the root to leaves. To help viewers make use of their domain
knowledge, we have included a search box that highlights paths
to nodes with matching terms. Edges are ordered from widest
on the left to narrowest on the right. While this method can
only represent a single scalar-value per tree node, it suggests an
approach to the tree-structured differential abundance problem,
which we call the DOI sankey.

In the DOI sankey, we split each edge in the DOI Tree across
different groups. For example, suppose we have the average
counts for treatment and control groups at each tree node. Every
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edge in the tree is split into two colors', with relative widths
of the different colors reflecting differences in sizes for the two
groups.

This display is designed to facilitate investigation of the tree
structured differential abundance question. For example, for a
single node and a single group, first compute the average abun-
dance at that node among all samples in that group. This will give
the width for that group’s color on the edge leading to the spec-
ified node. Differentially abundant subtrees then correspond to
subtrees where some colors occupy more space than others. That
is, this representation makes it easier to identify points where the
“flows” for different groups diverge—the colors begin to sepa-
rate. The DOI principle assists navigation across the tree struc-
ture, allowing focus on individual flow structures without losing
broader tree context.

Our third display is directed at the bacterial dynamics ques-
tion. Here, two panels are arranged one over the other; one
displays all time series, while the other displays all tree nodes,
with node sizes reflecting the value at that node averaged across
all time points. For this reason, we call the display, timebox
trees. In the time series panel, we have directly implemented the
timeboxes idea. We then link the panels: when a set of series
is highlighted by the timeboxes, the associated tree nodes are
also highlighted. For example, timeboxes can be used to focus
on a set of series with specific shape—increased abundance
after an ecological shock, for example—and identify along what
subtrees this pattern is present. To further focus on specific
elements, a pan-zoom scented widget is provided (Willett et al.
2007). The widget is a miniature version of the full time series
panel, equipped with a single brush whose extent specifies the
limits in the main time series panel. As in the DOI trees and
sankeys, a search bar can be used to highlight those series of
interest a priori.

The final display currently implemented in the package is the
natural converse of the timebox trees display. Rather than defin-
ing visual queries in terms of time series, it defines queries using
nodes in the tree. For this reason, we call the display treeboxes.
Rather than focusing on the intersection of brushes, as in time-
box trees, we focus on the union of brushed over nodes. This
allows us to highlight series associated with nodes on distant
subtrees. This display is also suited for the bacterial dynamics
problem. For example, by highlighting all nodes at one taxo-
nomic level in the tree, we can easily summarize the time series
pattern for all the taxa at that level. Alternatively, focusing on all
the children below a single node makes it possible to see how
much correlation and competition there is between taxonomi-
cally similar bacteria. As in the timebox trees display, a search
box and pan-zoom scented widget are provided.

In principle, it would be desirable to combine the timebox
and treebox displays, so that highlighted nodes and series could
be determined through brushes on both the tree and series.
For example, it would be useful to highlight the samples that
lie in the intersection of all timeboxes and union of all tree-
boxes. This could allow more complex queries than are currently
available. However, while conceptually appealing, the authors
encountered obstacles in practical implementation: brush and
mouseover events are required to occupy the same space in

1 We use the colorbrewer palette to facilitate readability (Brewer et al. 2003).
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Table1. Problem dimensions for each of the case studies. For problems with dimen-
sions larger than that in the housing prices problem, we recommend an initial sum-
marization or filtering step to prevent performance issues.

Data Number of timepoints Number of nodes
Antibiotics 56 386
Preterm births 216 318
Housing prices 254 944
Bikesharing 24 819
Global patterns 500 51

this combined view. Properly distinguishing these events can be
challenging, and a solution based on the introduction of a lag
between mousedown and the manipulation of a brush led to a
deteriorated user experience?.

To be practically useful, the resulting visualizations must
respond fluidly to user interaction. As the data increase in scale,
this fluidity can deteriorate for two reasons. First, rendering
many SVG elements in a framework like D3 is costly (Johnson
and Jankun-Kelly 2008). While it is possible to use alternatives—
HTMLS5’s Canvas, for example—it is often more challenging to
implement complex interactive behavior through them. Second,
some of the dynamic queries require a search over a many ele-
ments. These limitations are most pronounced in the timebox
tree display, which must search through all timepoints among
all time series whenever the brush is moved. The first, but not
the second, concern applies to treeboxes, while neither applies
to DOI trees. Nonetheless, we feel comfortable recommending
timebox trees for data on the order of 500 tree tips and 50 time-
points We note the sizes of the datasets in each case study in
Table 1, which each render fluidly, with the possible exception
of the California housing data, where there is a noticeable lag
in the timebox tree and treebox displays. In problems of larger
size, we recommend a preliminary filtering or aggregation step
across nodes or, if the time series is smooth, across neighboring
timepoints, to avoid these potential scaling difficulties.

2. Case Studies

We now delve into applications on real data. Our goals are
to illustrate potential workflows that incorporate treelapse,
describe the formulation of questions that can be naturally
investigated with our methods, and provide example interpre-
tations on treelapse output. Our examples are also chosen to
reflect the range of problem domains to which the package
can be applied—though it was motivated by applications to the
microbiome, it is not tied to it. More importantly, we argue that
the visualization principles reviewed above can substantively
improve the practice of data analysis in the class of problems to
which we have limited ourselves.

2.1. Bacterial Dynamics of Antibiotics Time Courses

Dethlefsen et al. (2008) investigated the effect of antibiotics on
bacterial community composition from an ecological perspec-
tive. The study tracks the microbiome of three patients across
ten months, with two 5-day antibiotic time courses separated by

2 However, the code for this approach is available publicly, in a separate branch of
treelapse: https://github.com/krisrs1128/treelapse/tree/combined-brushes.

Pan-Zoom Widget
. 0

Time Series

Selection Brush

Figure 1. Here we display the primary timebox tree view of the antibiotics dataset
from (Dethlefsen et al. 2008), annotated with the main components of the visual-
ization. The tree at the top is a taxonomic tree of all the bacteria contained within
the sample, and it is visually linked to the time series at the bottom: each node in
the tree corresponds to a path among the time series. The selection brush is used
to focus attention on the time series that go through it—these are highlighted in
blue—and other brushes can be added using a button not displayed here. The pan-
zoom widget at the top right is used to update the scales of the main time series
display so that only particular time windows and y-axis ranges are visible. This view
is the basis for all the timebox tree and treebox displays that appear below.

6 months. Discerning the variation in resilience across bacteria
is important, considering the role of bacteria in health and not
just disease.

We approach the data using the linked time and treebox
views, after first filtering low variance taxa and taking an asinh
transformation. An initial view, Figure 1, reveals two dramatic
drops in the overall bacterial abundance time series during the
antibiotics time courses. Two more subtle effects are also sug-
gested from this view,

® The second antibiotic treatment seems to have a more last-

ing effect, as the series take longer to return to their original
values.

¢ Some high-level taxa appear relatively unaffected by the

first antibiotic treatment. By more closely inspecting the
display, we are able to identify these as members of the Bac-
teroidetes phylum, see Figure 2.

Next, using the scented widget, we focus on the window
around the second antibiotic treatment. We apply the treebox
display to compare then behavior of different families of Firmi-
cutes, Lachnospiraceae, and Ruminoccocus. We suspect that these
taxa are associated with the delayed recovery after the second
time course. To investigate this, we input these family names in
the search box to isolate their positions on the tree; then we apply
brushes to highlight the series that contribute to these higher-
level families. The resulting view is given by Figure 3.

.Bacteroidetes
L]

[ 3 S Netp——
600
400
200
—— \’/h
0 T T T T T 1
10 20 30 40 50

Figure 2. Introducing a second box into the timebox display identifies the Bac-
teroidetes as a taxon only mildly impacted by antibiotics. The layout is identical to
Figure 1, except two small brushes are placed over the time series between 10 and 20
days, and now only those time series and corresponding nodes in the tree are high-
lighted in blue. Further, the user has hovered over the top blue node in the tree,
revealing the taxonomic identity of these series. Hence, brushing the time series
and linking with the tree can be used to discover and characterize notable variation
within the data.
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300
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Figure 3. Zooming into the second antibiotic time course and highlighting the
Lachnospiraceae and Ruminococcus, we see that the Ruminoccocus took more time
to recover to pre-treatment levels. Here, the red lines and nodes are those that
match the text search provided by the user in a search box just below the figure (not
displayed here). Hovering the mouse over these lines provides their identities—the
top red line is Lachnospiraceae, and the bottom red line is Ruminoccocus. Note that
the brush in the treebox display is located over the tree, rather than over the time
series. In particular, the search box and interactive brushing can be combined to
interrogate hypotheses of a priori interest.

Alternatively, we can summarize each node by the average
across its descendants—this brings attention to individual bac-
teria that may be underlying some of the broader taxonomic
patterns we have noted when studying the subtree sums. For
example, in Figure 4, we highlight all families below order
Ruminococcus, suggesting that the decrease due to antibiotics
occurs uniformly across almost all families. A point that was
not evident in the earlier sum-across-descendants view is that,
after the second treatment of antibiotics, a few of the Ruminoc-
cocus families recover more rapidly than the rest, for example,
the Unc095d3 (highlighted in red) are only briefly affected. In
contrast, most families seem to recover in unison after the first
treatment.

Further, note that in this subtree averages view, the tree dis-
play has changed. This is because, at each branching point, we
place the node with larger average value on the left. Figure 5
notes that the nodes at the far left in the tree are associated
with phylum Verrucomicrobiae, corresponding to a large average
abundance across time points. This phylum had been previously
obfuscated—because there are not many leaves associated with
this phylum, the sum was small. Interestingly, the abundance of
these bacteria seems to increase after the first antibiotics treat-
ment. Be cautious, however, that the average over only a few Ver-
rucomicrobiae species will be a more variable estimate than the
averages over the more prevalent phyla.

Figure 4. By hovering over the Ruminoccocus branches, we see that there is a pro-
longed effect of the antibiotics time courses more or less uniformly across the lower
taxonomic orders. The graphical elements are the same as before, except the user
has searched for Ruminoccocus and species Unc095d3, which has the highest aver-
age abundance within this taxon. By displaying averages rather than sums, we see
that the effect of antibiotics visible at higher taxonomic orders is not created by a
single dominant species becoming less abundant, but rather the decline in popula-
tions across all descendant species. The same display applied to different data can
yield different insights.

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 557

Verrucomicrobiae_Verrucomicrobiales

OGS SRR
10 20 30 40 50

OoON MO

Figure 5. The subtree averages aggregation brings attention to the Verrucomicro-
biae, which though only present as a few species, are each rather abundant. In par-
ticular, they seem to increase after the first antibiotic time course, which occurs
between days 15 and 20. This view was generated by placing a brush over the branch
on the far left, which has those nodes with the largest averages across all time-
points. The user’s mouse is over the blue series, which brings up the associated
taxonomic label. The determination of species whose abundances increase dur-
ing antibiotics, which would require many hypothesis tests using a more standard
approach, becomes quickly apparent via interactive visualization.

2.2. Differential Bacterial Abundance and Preterm Births

DiGiulio et al. (2015) tracked the abundance of bacteria in
the vaginal microbiome during pregnancy in an effort to study
relationships between bacterial community composition and
preterm birth. Ideally, it would be possible to develop clear bac-
terial signatures associated with preterm births.

Unlike the antibiotics study, we have measurements across
more individuals than we could reasonably inspect one at a time.
While we could average across all individuals, we will take our
cue from DiGiulio et al. (2015) and place each sample into one
of five Community State Types (CSTs), identified via k-medoids.
In that study, a linear model identified one of these CSTs (CST
4) as significantly more diverse, further it appeared associated
with preterm births. Here, we corroborate this finding using
exploratory views.

Therefore, our focus here is on the differential abundance
question, rather than dynamics. We would like to provide visual
representations of differential abundance across CSTs and also
between preterm and non-preterm births. DiGiulio et al. (2015)
interpreted the CSTs using a heatmap, with bacteria ordered
according to a hierarchical clustering. By using the DOI sankey
instead, we can interpret the CSTs in their taxonomic con-
text and at multiple scales of taxonomic resolution. Further,
while DiGiulio et al. (2015) focused on identifying associations
between preterm births and CSTs—presumably because test-
ing individual bacteria loses power—we can compare bacterial
abundances between preterm and non-preterm samples along
subtrees, without requiring CSTs as an intermediary.

In Figure 6, we compare the f CSTs according to their values
along the subtree. Specifically, we took the average of all samples
within each CST to define values at the (species-level) leaf nodes,
and then aggregated the averages up to the root. It isimmediately
clear that samples from CST 4 have much more taxonomic diver-
sity. Further, focusing on the Lactobacillaceae family, we note
that the differential abundance of these bacteria distinguishes
the remaining CSTs, see Figure 7.

Alternatively, in Figure 8, we avoid working with CSTs, dis-
playing instead averages among samples associated with either
preterm or term births. The green and yellow edges are asso-
ciated with preterm births—we see that they contribute more
weight to phyla outside the Firmicutes. This is consistent with
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cst_1
cst.2
cst_3
cst_4

cst.5

P:Firmicutes {'P:ActinobacteriaP:Bacteroidetes

Bacteria

P:ProteobacteriaP:TenericutesusobactBrynergistetes

Figure 6. The increased diversity among samples in community state type (CST) 4 is represented by the relatively larger contribution of red edges to branches outside of the
Firmicutes. This display shows the top of the DOI sankey visualization of the preterm birth data studied in (DiGiulio et al. 2015). The root of the tree is the taxonomic kingdom
Bacteria, its children are labeled according to their phylum names. Each color within a branch is associated with CST, and the width of the associated color corresponds to
the average abundance of that taxonomic group among all samples belonging to the corresponding CST, as indicated by the legend at the left. Phyla are sorted from most
to least abundant. This initial display of the DOI sankey provides a summary of overall abundances across taxonomic groups and CSTs, and suggests subtrees to navigate

into, to extract more detailed abundance information.

O:Lactobacillales

cst_1 O:Bacillales
cst_2

) F:Lactobacillaceae

cst_4 F:Streptococcaceae
(e

Lactobacillus

Figure 7. Zooming into the Lactobacillaceae family, we notice that the difference
between the remaining four CSTs is related to which types of Lactobacillus are most
prominent. The DOI sankey refocuses the tree around the last group that was clicked
on, in this case showing more detail about order Lactobacillales and its descendants.
The overview display can be recovered by navigating back up to higher-level taxa.
Hence, it is possible to navigate between broad overview and detailed displays in a
way that facilitates interpretation of results from statistical analysis.

the claim that CST 4, the most diverse of the CSTs, is associated
with preterm births.

2.3. Dynamics in Housing Prices

We next consider an application unrelated to the microbiome,
but with relatively clear hierarchical structure. Our data are
downloaded from Zillow and give the Zillow Home Value
Indexes at the neighborhood level, across the country, computed
monthly between 1996 and 2016. A link to the data source is pro-
vided in the supplementary materials. In our display, we have
taken the natural log of these indexes. As our hierarchical struc-
ture, we use each neighborhood’s assignment to state, regional,

VeryPretern
Preterm
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Term

P:Firmicutes ('P:ActinobacteriaP:Bacteroidetes
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Figure 9. The time series here represent California neighborhood home prices
between 1996 and 2016, and the tree corresponds to a geographic hierarchy,
with regions at the top and neighborhoods at the bottom. We have brushed the
neighborhoods with mid-range home prices before the recession. The associated
tree nodes are highlighted at the top. Note that the collection of series seems
to widen after 2008—we are interested in whether there are reliable predictors
of these alternate trajectories, given their similar starting points. This serves as
a baseline with which to compare Figure 10—these views are easy to transition
between interactively.

county, and city levels. We represent each of these coarser spa-
tial categories using the average of all neighborhoods contained
in them. We have filtered down to the 890 neighborhoods in
California; rendering more neighborhoods while keeping all 246
timepoints causes a severe lag in the interface.

Our basic analysis revolves around geographic and tempo-
ral variation in home prices. We are especially interested in the
effect of the 2008 recession and any variation in the lead-up to
or recovery from this event. These questions can be naturally
framed using timebox trees and treeboxes.

For example, we can study the trajectories of home prices
among neighborhoods, conditional on their being middle-
income before the recession. We generate the sequence of views
in Figures 9-11 to this end. The first of these figures isolates
neighborhoods with middle incomes before the recession,

Bacteria

P:ProteobacteriaP:TenericutefusobacterBynergistetes

Figure 8. Samples with high levels of phyla other than Firmicutes appear to be related to preterm births. Here, we again display the preterm birth data with a DOl sankey, but
instead of grouping samples according to statistically generated CSTs, we directly assign samples to preterm vs. not preterm according to whether the mother eventually
had a preterm birth. These new states are visible in the updated legend. Through interactivity, it becomes possible to develop meaningful visual summaries even before

calculating formal statistical ones.
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Figure 10. Among those neighborhoods with mid-range prices before the reces-
sion, displayed in Figure 9, we have selected those that recovered more rapidly by
introducing a brush at the top right of the time series panel. By hovering a brush over
a collection of tree nodes that all seem to be highlighted, we infer that the associ-
ated neighborhoods are located mainly in Los Angeles and San Diego counties. This
follow-up view is interesting to contrast with Figure 11.

using a single timebox. Since there appears to be a divergence
in trajectories after the recession, we introduce a second post-
recession timebox, dragging it over series with higher and lower
incomes during this second time period. This is the content of
Figures 10 and 11. Though not directly visible from the static
figures, hovering the mouse over the highlighted tree nodes
provides the geographic identities, and we find that most of
the middle-income series that increased after the recession
are associated with middle-income neighborhoods within
the coastal Southern California counties. For example, the
mouse is currently over a subtree with many highlighted nodes,
which is shown to be the Los Angeles-Long Beach—Anaheim
metropolitan area. In contrast, hovering over nodes associated
with those middle income neighborhoods that saw decreases
indicates that they were mostly located in Central California
and Oakland. In Figure 11, the mouse is positioned over the
Sacramento (which is located in Central California) subtree,
and seems enriched for this subset of strongly recession-affected
series.

The previous analysis highlights the fact that, within even
narrow geographic regions, there can be substantial variation in
prices. We can study this directly using treeboxes. In Figure 12,
we have highlighted all series in San Francisco County. We
see that, in 2016, prices range from around el3 &~ $440, 000 to
e'*> ~ 2 million. So, while all these neighborhoods tend to be
among the more expensive ones in California, prices can vary in
a non-smooth way across geographic space.

We conclude this example with a caveat that the Zil-
low data are not representative of all neighborhoods in
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Figure 11. In contrast to Figure 10, we can follow-up the selection in Figure 9 by iso-
lating those neighborhoods where prices remained depressed after the recession.
This is accomplished by moving the brush on the right down toward lower prices.
Hovering over the associated highlighted nodes in the tree to reveal the associated
locations, we see that most of these series correspond to neighborhoods in Cen-
tral California and the East San Francisco Bay Area. The ability to sketch the overall
shapes of series using brushes and interpret the associated selections using a tree
simplifies what might otherwise be complex comparisons.

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS ’ 559

50 100 150 200 250

Figure 12. In contrast to Figures 9-11, we can study the variation in series associ-
ated with a subset of the tree by using treeboxes. To study the range in home prices
within San Francisco County, we can brush over the associated nodes in the tree.
The red circle indicates that the user has searched for “San Francisco,” which guides
the user to the appropriate subtree. The mouse is hovering over one of the more
expensive neighborhoods. Hence, though the timebox tree and treebox views are
similar, they are directed toward different types of visual comparisons.

California, only those with enough listings on the site, so
should be supplemented by other data sources for any substan-
tial decision-making.

2.4. Sources of Variation in Bikesharing Demand

Our next example is a study in bikesharing demand, included
as an example of analyzing collections of time series when there
is no obvious hierarchical structure a priori. The data are avail-
able at the UCI Repository and were originally collected by a
Washington, DC-based bikesharing system for use in a Kaggle
prediction competition. A link is provided in the supplementary
materials. The data are hourly measurements of bike demand,
aggregated across all bikesharing stations, over two years, along
with supplemental weather data. In the competition, partici-
pants were asked to predict the hourly demand on a held-out
test set. Here, we adopt a descriptive view instead, attempting
to characterize factors associated with variation in bikesharing
demand.

Like the Zillow home prices application, we study this prob-
lem as one of describing a large collection of related time series.
Here, we consider the demand during a single day to be one
time series; this is a natural choice considering the daily peri-
odicity of bike demand. To arrange these daily series along an
interpretable tree structure, we apply a regression tree relat-
ing the supplemental data to the bikesharing demand (Breiman
et al. 1984). In more detail, we built this tree by noting the “two
table” structure of this problem: one describes bike demand,
the other holds the supplemental data. In both, the rows index
days, while the columns index either hours or supplemental fea-
tures. Our tree is the trained regression tree after predicting
demand at 8AM based on the supplemental data. We choose
this response because (1) we need a univariate response to apply
regression trees and (2) the more straightforward reduction
to daily-average-demand fails to distinguish between weekdays
and weekends, whose series appear qualitatively very different
from each other.

Given this response, the first split in the regression tree is
(unsurprisingly) the difference between weekends and week-
days. This is emphasized in Figures 13 and 14, respectively; using
timeboxes to isolate the two types of series highlight the left and
right sides of the tree, respectively. For a more subtle effect, we
select the internal nodes associated with the first split below the
weekday vs. weekend split; these are given in Figures 15 and 16.
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Figure 13. The two peaks at rush hour distinguish weekday series from the rest.
through the timebox tree view. The display is the same type of timebox tree view
introduced in Figure 1, but applied to the bikesharing data, where the time axis
represents the time of day and the y-axis gives bikesharing demand. Each series
is the bikesharing demand for a single day, over the course of two years. The tree
now corresponds to the regression tree generated by predicting demand at 8 am
using supplementary data. Two brushes are introduced to highlight the double
peaks corresponding to rush hours on weekdays. We see that although hierarchical
structure was not present immediately in the bikesharing data, it is useful to
introduce and interpret such structure by combining regression and visualization
methodology.

P [ ]
“sample_201 PETEY iy == -‘

Figure 14. By adjusting the two brushes in Figure 13, we see that unlike weekday
demand, weekend demand is unimodal. The few weekday series with unimodal
series seem to be associated with holidays. This is the case for New Years' Eve, which
is currently hovered over in the tree. The ease of transitioning from Figure 13 to this
display indicates the importances of brushing in interaction.

0 5 10 15 20

Figure 15. Weekday demand appears larger in 2012 than 2011—compare with
Figure 16. Here, brushes are introduced over the tree to see the series associated
with a particular split point. The red nodes are the results of searches over the two
nodes that are children of this split point. The fact that the yr>=0. 5 selected line
is larger than the yr<0 . 5 line means that demand was larger in 2012. In combina-
tion with searching and treeboxes, it is possible to interpret more subtle split points
in the decision tree.
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Figure16. Weekday demand increased in 2012—compare with Figure 15. The search
terms are the same as in that figure, but the subtree associated with the 2012 split
point is highlighted, using the union of two boxes. Note that unlike timebox trees,
which highlighted series lying through the intersection of brushes, treeboxes high-
light series within the union of brushes.
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Figure 17. The samples with highest night demand tend to fall on warm weekends.
Here, the pan-zoom widget has been used to adjust both time and demand axes to
narrow on a specific window of interest. Brushes are drawn over the larger among
these series, and the corresponding tree nodes are located close to one another,
in the part of the tree corresponding to the warm/cold average temperature
split. More generally, panning and zooming allows navigation between focus and
context.

This suggests that weekday demand increased during the second
year.

In contrast to these general questions about daily demand, we
could ask a more granular question about specific time windows.
For example, what characterizes days on which there is larger
than average demand after midnight? We can select these series
after first zooming into this time window. Figure 17 reveals that
the highlighted series are associated with the warm-weekend
split , which seems quite reasonable in retrospect.

Finally, we can study the behavior of the regression tree itself
using the DOI sankey (Figure 18). Here, we group samples
according to their quintile of 8 a.m. demand and then count
the abundance of the groups flowing down different branches.
We find that the quintiles are each rather strongly separated
after descending even a few steps down the regression tree—for
example, Figures 15 and 16 focus on 2011 vs. 2012 split among
weekday samples, showing that this split distinguishes between
samples falling in the second and third quintiles of 8 a.m.
demand.

This interactive representation of regression trees is poten-
tially more useful on larger trees that cannot be easily parsed
in a single view; in this sense the bikesharing tree is relatively
simple. In our ideal data analysis workflow, we imagine the ana-
lyst applying interactive visualization and modeling techniques
in an iterative, nonlinear fashion, in the spirit of De Oliveira and
Levkowitz (2003).

2.5. Hierarchically Clustering the Global Patterns Data

Each of the timebox tree and treebox examples presented so far
have focused on data with a clear time component. We note

root

- workinday< 0.5
workinday>=0.5

[ I S N

yr< 0.5

min_atemps#0.3106
min_atemp>=0.3106

yr>=0.5

Figure 18. So far, we have focused on the timebox tree and treebox representations
of the bikesharing data—a complementary view is provided by the DOI sankey.
Here, the tree is the result of the regression tree procedure, while the colors repre-
sent particular quantiles of 8 a.m. demand. This allows the determination of which
split descendants are associated with low or high demand.
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Figure 19. An application to the Global Patterns demonstrates how linking in treelapse can be applied to combine hierarchical clustering and parallel coordinates views.
Each panel represents a different subtree cluster within this dataset, as indicated by the different locations for the tree brushes. The paths in the lower halves of each
display represent the average value across different bacteria rather than timepoints, as in all previous figures. Though the samples originally do not include any hierarchical
structure, hierarchical clustering provides such a structure which can then be interpreted using treeboxes.

however that these techniques could alternatively be applied to
high-dimensional data, via the use of parallel coordinates (Insel-
berg and Dimsdale 1991). The usual parallel coordinates chal-
lenges remain, namely selecting scales for and an ordering across
the different coordinates, but the linking and focus-plus-context
ideas can still be employed in this setting. Here, we provide
an implementation of this idea on a dataset comparing micro-
biomes across various ecological environments (Caporaso et al.
2011), which is publicly accessible through the phyloseq R pack-
age (McMurdie and Holmes 2013).

The original Global Patterns data consists of 26 samples
across 9 environments (e.g., freshwater and soil). In each site,
there are counts across 19,216 taxa—to simplify visualization,
we filter to the 500 most abundant taxa.

We hierarchically cluster these 26 samples based on the 500
most abundant taxa, using complete linkage on the UniFrac dis-
tance. Figure 19 displays the resulting hierarchy together with a
parallel coordinates view of the asinh transformed taxa.

In Figure 19, we compare two subclusters from the hierarchi-
cal clustering tree, after zooming to a few of the bacteria that dis-
tinguish between the clusters. In contrast to the figures displayed
to this point, we only print time series associated with observed
samples — the leaves of the hierarchical clustering tree. This
reduces visual artifacts that can be created by plotting many sim-
ilar internal nodes, and which can overwhelm patterns occuring
in the leaves, which are those of central interest. Upon revis-
iting the original data, it becomes clear that the samples high-
lighted on the left come from freshwater samples, while those
on the right come from soil and skin, and looking up taxonomic
groups associated with the distinguishing bacteria confirms this.
For example, many of the species with high abundances in the
left figure come from order Oceanospirillales.

2.6. Inspecting Confirmatory Analysis

In addition to facilitating exploratory study, treelapse has
potential value as a device for inspecting confirmatory analysis.
We provide an illustration extending an example from (Calla-
han et al. 2016), which formally tested bacterial species for
association with age in a sample of mice. The testing approach
advocated there is particularly well-suited to visualization with
treelapse, since it sought to detect associations at multiple levels

of phylogenetic resolution, using statistical tools developed by
Yekutieli (2008), and Sankaran and Holmes (2014).

The data of interest in Callahan et al. (2016) are bacterial
counts collected across old and young mice. After variance-
stabilizing these counts using DESeq2 (Love et al. 2014), a ¢-test
was applied to each node in a phylogenetic tree, comparing
abundances between old and young mice. To account for mul-
tiple testing, we employ the structSSI algorithm (Yekutieli 2008;
Sankaran and Holmes 2014) along with methods available in
the multtest package (Pollard et al. 2005).

To interpret the results, we apply timebox trees. Our goals
are to (1) identify subtrees with consistently elevated differ-
ential abundance across age groups and (2) compare alterna-
tive multiple testing adjustment procedures. Our approach is
to display the negative-log raw and adjusted p-values for each
node, with alternative methods compared via parallel coordi-
nates. One view of the resulting display is captured in Figure 20.
First, we see that significant nodes tend to be significant across
all methods—the ordering between different series appears sta-
ble. Interestingly, the Sidak one-step and structSSI procedures
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Figure 20. Viewing a tree of p-values across different methods highlights two sub-
trees with strong associations with mouse age, across several testing procedures.
The tree represents the taxonomy of bacteria, and the series provides the negative
log p-values associated with nodes as computed by different tests, listed along the
Xx-axis as in parallel coordinates. By selecting series with larger values for a test, we
see the associated subtrees of significant p-values. Hence, hierarchical views can
be useful even in the confirmatory testing settings which typically study results
from individual tests in isolation from each other.
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seem to have lower power than the others, including conser-
vative FWER-controlling methods, like the Bonferroni proce-
dure. Further, in this application, FDR-controlling techniques
do not seem to offer notably different adjusted p-values, relative
to those controlling FWER. This suggests that, for this problem,
bacteria are either strongly associated with age, or not associ-
ated at all, so that there is little gain from using more sensitive
procedures.

Further, selecting series with strong association between
abundance and age, two major subtrees are brought to the fore-
front. Separately querying the taxonomic identities of these bac-
teria reveals that they are two subgroups of Clostridia, which
is consistent with the analysis of Callahan et al. (2016). More
than this specific analysis outcome, this view demonstrates that
interactive visual inspection of results from confirmatory anal-
ysis provides deeper insight than the standard practice of print-
ing tables of (adjusted or unadjusted) p-values: the relationship
between significant nodes is only clear upon visualization on the
tree.

3. Conclusion and Future Work

Here, we have reviewed some fundamental principles of data
visualization and described their implementation in a new
treelapse package. Further, we have provided examples of
the practical usefulness of these principles in real-world data
analysis situations.

This package has only developed basic ideas, and there are
a number of potentially useful extensions worth exploring. For
example, we have not considered the principle of arrangement in
our visualizations (Buja et al. 1996), though many of our conclu-
sions were based on comparing alternative selections of the same
display. We could imagine faceting our displays across groups to
make these types of comparisons more accessible. Further, we
have only worked with the DOI distribution described by Heer
and Card (2004). It would be interesting to define a more sta-
tistical notion of interest along nodes, based on cognostics, for
example Hafen et al. (2013), and Friedman and Stuetzle (2002).
A simple extension could be to allow graph layouts instead
of trees in time and treebox displays, for data that cannot be
coerced into a hierarchical structure. Further, if these ideas turn
out to be useful in practice, it would be valuable to modularize
the basic visualization layouts and relationships into a library,
allowing the wider community to construct novel linked, inter-
active graphics with minimal effort. Finally, formal quantitative
assessments of interface design through a user study could
guide changes that improve the experience of practitioners.

In summary, we have built an easily accessible R package
for visualization techniques in a very specific methodology
problem—analysis of differential abundance and dynamics
in hierarchically structured data—that appears in a variety of
application domains. We have leveraged a link between R and
D3 (Vaidyanathan et al. 2014) to create visualizations during
the exploratory phase of data analysis; in this way our work is
a departure from the culture of polished, journalistic visual-
izations prioritized by the D3 community and is more closely
aligned with the vision in De Oliveira and Levkowitz (2003)
of more tightly integrating data visualization and statistical

analysis techniques. Finally, we have given a series of exam-
ples to demonstrate how the general visualization techniques
of focus-plus-context and linked brushing can be practically
incorporated into a range of practical analysis workflows, from
studying the impact of bacteria on human health to better
allocating units in commuter bikesharing systems.
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