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Abstract

Models that perform out-of-domain generalization borrow knowledge
from heterogeneous source data and apply it to a related but distinct
target task. Transfer learning has proven effective for accomplishing this
generalization in many applications. However, poor selection of a source
dataset can lead to poor performance on the target, a phenomenon called
negative transfer. In order to take full advantage of available source data,
this work studies source data selection with respect to a target task. We
propose two source selection methods that are based on the multi-bandit
theory and random search, respectively. We conduct a thorough empiri-
cal evaluation on both simulated and real data. Our proposals can be also
viewed as diagnostics for the existence of a reweighted source subsamples
that perform better than the random selection of available samples.

Keywords: Out-of-domain generalization, Domain shift, Source selection,
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1 Introduction

In many modern prediction modeling applications, the operating conditions of
an algorithm may not match the setting in which it was trained. For example,
this may result from a change in spatial or temporal context. In either case,
ephemeral predictors — those present in the training data, but not in the tar-
get setting — can result in performance drops (Rosenstein, Marx, Kaelbling,
& Dietterich, 2005; Tsymbal, 2004; Zhang, Deng, Zhang, & Wu, 2020). This
problem is especially acute when labeled data scarce in the target regime. As a
way of borrowing extra knowledge from out-of-distribution source data, trans-
fer learning shows great performance in practice, but its mysterious mechanism
makes it difficult to choose a suitable dataset to pretrain a model on, especially
under a computational budget (Wang, Dai, P6czos, & Carbonell, 2019). This
is referred to as the out-of-domain generalization problem, and it has attracted
substantial interest from the community over the last two decades (D. Li, Yang,
Song, & Hospedales, 2018; Moreno-Torres, Raeder, Alaiz-Rodriguez, Chawla,
& Herrera, 2012; Recht, Roelofs, Schmidt, & Shankar, 2019; Yue et al., 2019).
Important advances include the use of transfer learning methods to improve
performance on small target datasets (Ghifary, Kleijn, & Zhang, 2014; Guo,
Lei, Xing, Yan, & Li, 2018; Long, Wang, Ding, Sun, & Yu, 2013) and the intro-
duction of regularization strategies that encourage models to learn structure
that generalizes across contexts (Chen, Wang, Fu, Long, & Wang, 2019; Chen,
Wang, Long, & Wang, 2019; Kirkpatrick et al., 2017).

However, existing approaches are difficult to interpret. When a model per-
forms much worse outside of the context that it was trained, it can be difficult
to isolate characteristics of the training data or resulting model that are respon-
sible for the deterioration, which is called negative transfer (Rosenstein et
al., 2005; Wang et al., 2019). Conversely, performance gains may be obtained
when pretraining models on different source datasets, but the mechanisms are
often unclear. For purely automated systems, prediction performance is still
the key property. However, in an increasing number of scientific or social appli-
cations, models must also be used by domain experts to better understand
their systems of interest, and in this context, attribution is critical.

Given target and source tasks, one can always supplement data from the
target task with data from the source. The question is: Does the choice make
a difference, and if so, can we understand and take advantage of it? To address
this, we empirically explore several strategies for training models across non-
identically distributed subsets of a source dataset and measuring how model
performance varies across reweighted sources. We consider both linear regres-
sion models trained on tabular and geographic data and deep learning models
trained on imagery of pathology slides. Specifically, we investigate ensem-
ble and bandit-based approaches for highlighting subsets of the source data
that strongly affect performance on the target. Differential performance across
ensemble members or a strong preference for certain bandit arms are used as
indicators of distributional heterogeneity. Further, we propose accompanying
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visualization strategies that clarify the relationship between source and tar-
get data within these algorithms, identifying the optimal source compositions
of the ensemble method and the trajectories of the bandit selection method.
Finally, we study in detail the factors that influence these source selection
methods, including the initial data representation, the criteria for splitting the
sources, and the relative abundance of data similar to the target.

In section 2 we highlight commonly used approaches to out-of-domain gen-
eralization and then review concepts that directly inform our approach. In
section 3, we detail our source selection strategies. In section 4, we apply
these methods to a simulation reflecting the temporal generalization problem.
Section 5 presents two case studies, one of home prices across California and
another on tumor identification across hospitals with different patient popula-
tions and imaging equipment. We note that all data and code described below
are available: https://github.com/XinranMiao/source_selection.

2 Background

2.1 Transfer and negative transfer

Consider a prediction task with target data of interest D' = {zf, y!}7,, where
z!’s and y!’s are the observations of variables and responses and n' is the target
data size. When n! is small and a related larger supplementary dataset is avail-
able, a common rule-of-thumb is to pretrain the model on this larger dataset
before training it on the target. This practice is called is transfer learning (Tor-
rey & Shavlik, 2010). Denote this related source dataset by D® = {af,ys}7,
where n® > n!. We will often have metadata about each observation in the
source. This can be information aside from the predictors or certain data repre-
sentations that we are unavailable in the target. Let p’ and p* be the unknown
distributions of target and source, and € € © be the parameter of the predic-
tion model. Then transfer learning learns a model fy based on D*, which can be
fine-tuned on D? and ideally yields fy(2L) ~ ¢y for new samples (zf,yt) ~ pt.

Despite the popularity of transfer learning, negative transfer appears —
training models on source together with target data can be worse than train-
ing on target data alone (Rosenstein et al., 2005; Wang et al., 2019; Zhang et
al., 2020). This can be caused by distributional gaps (Koh et al., 2020), where
pt and p*® are very dissimilar. For example, satellite images from Africa and
the Arctic Pole can be extremely different for landcover segmentation due to
dissimilar feature spaces and prediction rules. Note that both the covariate
distribution and the conditional distribution of response given covariates may
change. (Zhang et al., 2020) summarizes methods to overcome negative trans-
fer, including selecting or reweighting source data (J. Li, Qiu, Shen, Liu, & He,
2019; Yao & Doretto, 2010), improving target data labeling (Gholami, Sahu,
Rudovic, Bousmalis, & Pavlovic, 2020), addressing domain divergence (Shen,
Qu, Zhang, & Yu, 2018), and integrated approaches (Kuzborskij & Orabona,
2013).
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Instead of working on fixed source and target sets, there also have been
attempts to investigate the transferability of source datasets across an entire
application area. In these studies, the goal is to identify a small number of
source datasets that can be used for transfer learning across a variety of
problems. For example, (Neumann, Pinto, Zhai, & Houlsby, 2020) explores
qualitatively important factors in the remote sensing context, identifying
source datasets whose learned representations lead to high performance on
various downstream tasks.

2.2 Subset selection

With the purpose of saving computation and avoiding negative transfer,
researchers have developed subset selection strategies to weight the source
dataset effectively with respect to the target task. Suppose we partition the

source into K subsets D], D3, - - - , Dj,, with empirical distributions pi, - - - , pj.

Let w = w1, - ,wgk]| be the weights of K subsets, then with a specified loss

function L : D! x © — R, we wish to minimize the generalization risk
min, By [L(D",0 (w), (1)

where the model parameters are fit using

0 (w) = argmin By [L((2*,y°), 6)] (2)

and p(w) = Z,If:l wyp;, is the weighted empirical subsampling distribution.
The second minimization is the empirical risk estimator on the w-reweighted
collection of source datsets. The first minimization searches across reweightings
to minimize the loss on a dataset D! drawn from the target p’.

Sequential subset selection methods have been proposed under this frame-
work. Bouneffouf, Laroche, Urvoy, Féraud, and Allesiardo (2014) treat training
examples individually as partitions. Let d,: be the point mass at 7. Then the

S
weighted empirical subsampling distribution is ni Z?:l dz2, which is a special

case of p (w) with K = n®, p{ = = and w; = 1/n°. They model the effect of
adding one example onto the current training set by influence functions and
then add the example with largest effect to the training set at each iteration.
Gutiérrez, Peter, Klein, and Wachinger (2017) formulates this problem in a
more general source partitioning setting and optimize it using Beta-Bernoulli
Thompson Sampling, which sequentially adds source samples from different
partitions with the choices of partitions updated by target performance. In
this case, the weights w are updated sequentially as a heuristic to optimizing
(1). They demonstrate efficiency in training data selection method on medical
image data. Our approach 3.2 translates this method into the context where
source clusters are learned using alternative representations. Instead of com-
bining samples from different partitions to train a final model, (Yao & Doretto,
2010) trains weak classifiers sequentially into a stronger one using Boosting.



Springer Nature 2021 BTEX template

Source data selection for out-of-domain generalization 5

Each weak classifier is trained by a weighted combination of one source par-
tition and the target, with choice of partition decided by performance and
weights updated iteratively. Here the weights consist of two numbers indicat-
ing one source partition and the target, which is different from w introduced
before. Despite progress on subset selection algorithms, their dynamics can
be difficult to characterize and diagnostic evaluation is not readily available.
We build on these studies to further investigate performance attribution onto
source subsets for out-of-domain generalization problems.

3 Methods

3.1 Ensemble Method

The optimizer (ﬁ),é) of (1) cannot be obtained analytically. One approach
to obtaining an approximate empirical solution as described in Algorithm 1,
which we call the ensemble method. For a given source dataset with K sub-
sets, we randomly sample subsets of size Nraining repeatedly for J times, each
time re-weighting the K subsets differently. Specifically, in repetition j, we
sample weights w’ from a Dirichlet distribution with parameter 1, and then
sample data d’ from D° that are weighted accordingly. After constructing
the reweighted data, we train a model and evaluate it on the target task,
yielding loss ;. After J repetitions, we find the j with minimum [;. The
empirical optimizer would be the w and 6 found in the 4t interation, i.e.,
(11)7 0) —_ (warg min; [; , fare min; [; )

Algorithm 1 Sample weighting: Ensemble method

Require: Number of source partitions K, number of repetitions J, and
number of examples in each subsample N aining
for jinl:J do o ‘
Sample weights w? = [w], w3, - ,w}] ~ Dirichlet(1x) for K subsets.
For each k, sample Nraining X Wx points from D to form dj..
. A ; . K
Fit the model 6 (wﬂ) = mingeo Y, Z(%yi)edi L((«t,y}),0)
Evaluate the target loss [; = Z:il L ((xf, yl),0 (wj))
end for R R
The optimizer is (i, ) = (wj*,e (wj*)> where j* = argmin, [;

3.2 Thompson Sampling with the Beta-Bernoulli Bandit

The multi-armed bandit problem deals with the situation in which an operator
iteratively chooses one of a set of unknown distributions and observes a reward,
with the goal of maximizing the cumulative gain (Lattimore & Szepesviri,
2020). An example comes from a gambler at a row of slot machines, who has
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to decide which machine to play at each iteration. This setting is analogous to
the sequential subset selection problem if we view different source subsets as
arms in the bandit context.

Consider models trained on each source subset, and denote current param-
eter estimates of the reward distributions for each subset by A1, -+, Ak.
Starting from a randomly initialized model, at each iteration h, we add a batch
of samples from one subset Dy, and observe the reward r,, with the purpose
of maximizing the cumulative expected reward after H rounds:

H
Ry = HmaXE [rp] ZE (3)
h=1

Let reward r;, be the indicator of whether adding samples from subset kj,
increases the target performance:

1, otherwise,

)

{O, if adding data from source kpincreases loss
Th =

where kp, € {1,2,---, K} indexes the source subset sampled at iteration
h. We model the probability of this 0-1 reward at the k* source subset using
ry, ~ Ber (A, ). Assume priors A\, ~ Beta (g, 8;). Then the posterior for
Ak, at iteration h can be updated to a Beta distribution with parameters
o, _, +1[rn = 1] and B, _, +1[ry, = 0]. At each iteration h, the choice of source
subset Dy, is obtained by sampling A\i’s from current posteriors and choosing
the arm with the highest probability of reward, i.e., k;, = arg maka:1 S\k, where
N ~ Beta(ay, Bk), kK =1,2,---, K. Algorithm 2 provides the pseudocode of
this Thompson Sampling with Beta-Bernoulli Bandit method. This approach
addresses the trade-off between exploiting what is known and exploring new
potentially useful source data.

3.3 Summary statistic

The necessity of subset selection depends on whether reweighting source sub-
sets has any effect. We summarise the extent to which can this dataset be
reduced to an efficient subset by computing the difference of optimal weights
away from the uniform case

Zw ) 4

3.4 Protocols

Generalization failures are typically caused by ephemeral predictors or distri-
butional shifts (Wang et al., 2019). We mimic these situations by splitting the
dataset into source and target sets either using metadata information (section
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Algorithm 2 Source selection: Thompson Sampling with Beta-Bernoulli
Bandit

Require: initial hyperparameters ap = «, S = [, source subsets {Dk}szl,
convergence error € > ()
Randomly initialize model parameter 0
Evaluate the model on the target set and obtain accuracy ag
while |aj, — ap—1| > € do
kp, = argmax’<_| Ay, where Az ~ Beta(u, Bx)
Randomly select a batch of samples from Dy, , add them to the indices
of training examples Iiraining
Update 6 = argmingee 3, y.)e Luaming L((z%,y!),0)
Compute the prediction accuracy ap of the updated model on target
if ap > a;_1 then
g, = Q, + 1
else
Bri, = Br, +1
end if
end while

4 and 5.1) or data representations (5.2). After defining the source and target,
we further split the source into K subsets by either pre-defining some latent
variable (section 4) or clustering features (section 5.1) and/or their represen-
tations (section 5.2). Of the two splitting protocols, the former fits scenarios
where data are collected at different times and locations with inherent differ-
ences, such as satellite images across continents or stock prices over a long
period. Our goal is to determine whether, and possibly why, certain subsets
make better (or worse) generalizations. The latter can be adopted in a more
general situation without clear information on how distribution varies. In that
case, the goal is more exploratory.

Details of splitting the data are introduced in section 5 and vary among
tasks and datasets. Given the target D' and K source subsets D, D5, -+ , D3,
we explore the generalization problem using both the ensemble (section 3.1)
and the bandit-selection approaches (section 3.2). We analyze experimental
results both quantitatively (section 3.3) and qualitatively.

4 Simulations

In temporal problems, predictors can be ephemeral, meaning that there is
hidden context that induces changes in the underlying distribution over time
(Tsymbal, 2004). It is therefore important to keep the model updated. Prop-
erly weighting data according to time can help avoid problems brought by
epheremerality while still using of as much historical information as possible.

As an illustration, we simulate a dataset of size 1000 where both the
response y € R and predictor z € R* are collected over time. We consider time
as the meta information z. Our target task is to make predictions on the most
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Fig. 1 The workflow of experiment protocols.

recent data (observations with large z values) given the past. The relationship
between y and x depends on z € (0, 10]:

Y= be + e, (5)

where b, is a time-varying coefficient defined by formula (6) and € ~
N (0,0.1).
We take x ~ N (0,1,). The coordinates of b, are generated by

Bjajz +¢gj, 0<2z<3
boj = Bileg +1)2% +¢5, 3<2<5 (6)
Bilaj —1)z+e; 5<2z<10,

where 3 = [B1, B2, B3, Ba]T = [.9,.2,—.3,.3]T, ¢;’s are gaussian with mean zero
and standard deviation .01, .1, .04, .1, and «; follows a uniform distribution
n [—1,1]. The interpretation that the coefficients in equation (5) are evolving
linearly for the first three timepoints, quadratically for the next two, and
linearly again for the remaining timepoints (but with a different slope).

We wish to investigate whether there exists a training subset weighted by
time-based clusters that predicts the target better than a balanced subset.
The training model is linear regression. We split source into K = 3 subsets
according to time z, and apply the bandit-selection and ensemble methods. The
experiment follows from the protocol in section 3.4 and values of parameters
are listed in Table 1.

Table 1 Model parameters of Simulation

Sampling Procedure = Notation Description Value
Both methods K Number of clusters in source 3
Ensemble method Nyraining Subsample size 1000
Nsimulation ~ Number of subsamples to generate 1000
Bandit-selection H Number of iterations 30

b Number of samples to add at each iteration 10
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Fig. 2 shows that bandit selection yields a consistently lower loss compared
with a random selection, and the performance gap increases over iterations.
The final training set of bandit selection mostly comprises data from the latest
source subset, which agrees with the intuition that the most recent data are
most relevant to the present task. The left panel of Fig. 3 shows that the
ensemble method prefers data from the latest subset as well. Specifically, higher
weights on subsets with large values of z improve performance, reinforcing the
conclusions of the bandit method.

20

75000 15

Method

B Bandit
B Random

50000

Error
Occurence
-

o

o

25000

0 10 20 30 0
Rounds

2
Method == Bandit == Random Cluster

Fig. 2 Bandit selection results for the simulation in section 4 when K = 3 and time z has
an effect on the relationship between y and x according to formula 5. The left panel shows
the generalization accuracy over iterations by bandit selection (red) or sequentially adding
samples at random (green). The right panel shows the final occurrence of different source
subsets correspondingly.

We repeat these two methods on a dataset where coefficients are constant
over time, y = fx + €. Fig. 4 and the right panel of Fig. 3 suggest that neither
method improves over a random selection. Under such setting where data
are not heterogeneously distributed across contexts (time, in this scenario),

Cluster2
Cluster2 J00

Clustert Clustert

Fig. 3 Generalization performance across different weights of the ensemble method for
simulation in section 4. The left panel refers to the case when time has an effect on the
relationship between y and = while the right panel refers to the other. In each ternary plot,
vertices and edges represent three source subsets and the corresponding axes of weights w?
in subsamples, respectively. Each point inside the triangle indicates a weighted subsample,
whose coordinates and color indicate the weights on three source subsets and the prediction
loss, respectively.
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a source selection will not be useful. In this sense, our methods can serve as
diagnostics on whether an improved source subsample exists.
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Fig. 4 Bandit selection for simulation in section 4 when K = 3 and time z doesn’t have an
effect on the relationship between y and z. The plots follow the same manners as in Fig. 2

5 Experiments

5.1 California Housing Prices Data

The California Housing Prices Dataset contains median house prices and ten
explanatory variables derived from the 1990 census (Pace & Barry, 1997). The
data have a spatial component, with each home associated with its latitude
and longitude. We use this data to explore the scenario where source and target
samples share the same variables but are geographically dissimilar, and where
a careful selection of source data may support improvement on a target task.
To mimic the situation where the goal is to perform well in a specific region,
we geographically split data into source and target. We first fix a range of
longitude and latitude to be the target region, and then split the remaining
(source) samples via a K-means clustering over all variables. The training
model is linear regression. Detailed parameters are listed in Table 2 and results
are given through Figs. 5 - 10. The high-level takeaways are

® The bandit selection method results in a source subsample that consistently
improves performance relative to a random selection.

® The final bandit selection prefers certain source subsets over others, and the
summary statistic has a high value.

® The ensemble and bandit selection methods agree with each other on the
selected source subsets.

Fig. 5 suggests that bandit selection yields consistently better and more
robust performance than the random selection for K € {2,...,5}. The two
error curves have increasing gaps after overlapping in the first few iterations.
After 100 iterations, the bandit selection error curve consistently has lower
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Fig. 5 Bandit selection error over iterations with (columns) K from 2 to 5 for (red) cluster-
based and (green) random source splits in the California Housing Prices experiment (section
5.1). The learned mixture outperforms its alternative consistently with less fluctuations.

target set error than random selection. From Fig. 6, the increasing summary
statistic in bandit selection reflects the increasing nonuniformity of weights
across source subsets. The selection makes certain subsets more visible, with
individual subsets contributing more than 50% of the total weight. In com-
parison, the random selection shows decreasing summary statistics and finally
results in almost uniform weights over the source subsets. Further, the bandit
selection’s preference on source subsets also agrees with the ensemble search;
e.g. from Fig. 7 and 10 both methods favor the first source subset when K = 3.
Feature histograms for each source subset and the target (Fig. 9) suggests that
this preferred subset Dj is more similar with the target D! with respect to the
explanatory variable income and the response variable housing price. Those
two variables may be responsible for the selection of specific source clusters
for this given target.

Table 2 Model parameters of the California housing dataset

Sampling Procedure  Notation Description Value
Both methods K Number of clusters in source 2,3,4,5
Ensemble method Niraining Subsample size 200
Nsimulation ~ Number of subsamples to generate 200
Bandit-selection H Number of iterations 200
b Number of samples to add at each iteration 20

5.2 Camelyonl7-wilds dataset

In breast cancer diagnosis, pathologists detect tumors manually by screening
slides of lymph nodes under microscope. While automated algorithms generally
yield good results, they may generalize poorly across facilities or equipment due
to differences in data collection and processing (Tellez et al., 2019). We study
the tumor classification task on Camelyonl7-wilds dataset, where inputs are
96 x 96 patches of whole-slide images of sentinel lymph nodes, and outputs are
their binary tumor indicator labels for breast cancer metastases detection (Koh
et al., 2020). The data consist of 455,955 patches collected from five separate
hospitals, across which generalization performances differ substantially.
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Fig. 6 Subset weights and the summary statistic over iterations in the bandit selection of
California Housing Prices experiment (section 5.1). Columns refer to different choices of K
and rows represent whether the selection is based on (top) multi-armed bandit or (bottom)
by random. For each subplot, the x-axis represents iterations, while the y-axis includes two
parts: a line plot (top) indicating the summary statistic and stacked bins (bottom) indicating
subset weights.
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Cluster

Fig. 7 The occurrence of three source subsets over 200 iterations for bandit (red) and
random (blue) strategy when K = 3 in the California Housing Prices experiment (5.2.1).
Compared with the random selection which selects almost uniformly across subsets, bandit-
based selection selects the first subset Dy .
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Fig. 8 The source-target split on California Housing Prices dataset for K = 3 with color
indicating source subsets or the target dataset (section 5.2.1).
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Fig. 9 Variable histograms of California Housing Prices dataset (section 5.2.1). Rows cor-
respond to source subsets and target, while columns represent different variables. The most
favorable source subset, D7, has similar histograms on explanatory variable income and the
response variable housing price, whiles its histograms of latitude and longitude show less in
common with the target D! compared with other source subsets D§ and Ds.

Cluster2

Cluster1 $ Cluster3

Cluster3

Fig. 10 Generalization performance across different weights of ensemble method when
K = 3 in the California housing experiment (section 5.1). The ternary plot follows the same
format with Fig. 3. Since points near the Dj vertex have lowest loss values, we can draw the
same conclusion as drawn from Fig. 7 that D{ is more informative.

The Camelyonl7-wilds dataset distinguishes itself from the simulation
(section 4) and California Housing Prices experiment (section 5.1) in two
aspects. First, it consists of images whose original features, pixels, are only
weakly predictive; this makes extracting higher level representations neces-
sary. Since deep learning approaches are usually used for imagery data, the
model parameters are not directly interpretable with respect to input features.
High-dimensionality of feature representations also requires dimensionality
reduction methods be employed before reaching conclusions. Second, data are
collected from five hospitals, which can be treated as inherent group splits
with potential distributional shifts. As discussed by Koh et al. (2020), gener-
alization from one hospital to another may have bad performance. This makes
source data selection realistic and sensible.

The experimental protocol follows from section 3.4. The classification
model we use is the Residual Network (ResNet) proposed by He, Zhang, Ren,
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and Sun (2016) with implementation details described in Appendix A.1. For
the source / target split, we set one hospital as the target. For the source, we
use either samples from all but the target hospital or samples from all hospitals
(including the target hospital). Notice that for the second arrangement, the
source and target still don’t contain overlapping data points, although some
observations in the source come from the same hospital as the target. The
source data are further split by either (i) hospitals themselves or (ii) clustered
deep neural network representations of the imagery. By changing the target
hospital, we can also evaluate whether samples of certain hospitals are “uni-
formly easier” to predict, and whether the good generalization is commutative
between hospitals.

We provide details of the source splitting approaches. Approach (i) uses
the original hospital IDs as source subset splits (K = 5) to mimic the situa-
tion when we select source data from facilities available. We also assign subsets
randomly as a comparison. In contrast, approach (ii) is based on extracting fea-
tures from a ResNet. Specifically, we pass a pretrained ResNet through source
images and obtain activations after convolution layers. Each convolution layer
corresponds to an array of activations with first dimension equal to the number
of data points. After flattening the activation array and performing Principal
Component Analysis with 50 components, we have a 455,955 x 50 matrix of
feature representations from each convolution layer. We use activations from
either shallow or deep convolutional layers to study the influence of this choice.
In principle, representations from deeper layers in the network capture higher
level structures. However, it may reveal too much about the class label and
thus cannot be a good criteria to split the source images. For example, if the
deepest activations are discriminative enough for classification, then splitting
the source accordingly can result in highly imbalanced subsets with respect to
labels. With either deep or shallow ResNet feature representations, we cluster
the source into K subsets via K-means.

5.2.1 Experimental results

We start with the case where the target is hospital 5 and the source contains
data from all hospitals. First, we investigate the influence of source splitting cri-
teria on target performance. When we use hospitals as source subsets (K = 5),
we would expect to select most samples from hospital 5, since variation among
facilities may affect generalization. Fig. 11 confirms this conjecture under the
bandit selection, since the final source composition is dominated by hospital
5. Deciding source subsets by clustering ResNet features yields a comparable
accuracy over bandit iterations (Fig. 12) — accuracy on the target rises in the
first 10 iterations and stabilizes afterwards. The choice of K does not notice-
ably affect accuracy, but does affect the distribution of source subsets used.
When K = 5, certain clusters are preferred and almost dominate the selection
(Fig. 13). The summary statistic reaches a similar value as the hospital split
case. A larger choice of K results in a more uniform spread of the ultimate
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subset weights as well as a lower summary statistic. This is expected since
finer clustering makes clusters less distinguishable from one other.

Next, we change the source by excluding data points from hospital 5. Com-
pared with previous results, the accuracy of bandit selection fluctuates much
more after consistently increasing in the first 10 iterations, and it converges to
a lower overall accuracy (Fig. 14). This further confirms that including data
from hospital 5 in the source supports generalization. Another observation is
that in both source settings, splitting the source randomly yields a comparable
bandit selection. The source split by clustering deep neural network features
does not ensure a better source subsample. We discuss this phenomenon further
in section 5.2.2.

We have focused on results where the target consists of hospital 5 samples.
Other choices of target hospitals yield similar results. The only noticeable dif-
ference is that, when we use hospital 1 as the target and all hospitals as source
and split the source by hospitals, the bandit selection does not prefer data from
hospital 1 over other hospitals. Complete experimental results can be found in
Appendix A.2. If we treat our method as a diagnostic, we would conclude that
prediction on hospital 1 does not require source selection. This agrees with
(Koh et al., 2020), which frames hospital 5 as the out-of-distribution data and
other hospitals as in-distribution data. In the following subsection, we explore
to what extent having hospital 5 data in the source benefits generalization.

025
2
5
g
3
g
osf

Fig. 11 Hospital-based subset weights as a function of bandit selection iteration. Target
data consists of hospital 5 only, while source consists of observations from all hospitals. We
split the source into K = 5 subsets according to hospitals. The plot follows the same format
as each subplot of Fig. 6.

5.2.2 Transitional study

Having source samples from hospital 5 benefits generalization performance. A
follow-up question is the extent to which improvement depends on the pro-
portion of source data points available from hospital 5. For example, are a
few samples from hospital 5 sufficient to guarantee strong generalization? This
relates to the situation where we must determine the number of samples from
the hospital of interest that will need to be labeled, assuming plentiful data
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Fig. 12 Model accuracy over bandit selection. Target data consists of hospital 5 observa-
tions only, while source consists of observations from all hospitals. The source is split into
K subsets either at random, by hospital ID (only when K = 5), by clustering the deep
ResNet representations, or by clustering the shallow ResNet representations. Column rep-
resents number of source subsets K and in each subplot,  and y-axes represent iterations
and accuracy, respectively, with color indicating the ways we split the source. In each bandit
selection, the model converges within the first fifteen iterations maintains accuracy between
0.8 and 0.9 with small fluctuations. The result doesn’t have an obvious dependence on K or
how we split the source.
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Fig. 13 Hospital-based subset weights as a function of bandit selection iteration in the
Camelyonl7-wilds experiment (section 5.2.1). Target data consists of hospital 5 only, while
source consists of observations from all hospitals. We cluster the source into K subsets (K
indicated by column) according to deep (top) or shallow (bottom) ResNet representations.
Each subplot follows the same format as each subplot of Fig. 6.

from other hospitals. Such knowledge is especially important when labeling is
scarce and costly.

In the following experiment, we perform bandit selection with the source
containing 1500 examples from hospitals 1 through 4 each and varying num-
bers of examples from hospital 5. We call the size of hospital 5 data in the
source compared with others the “proportion” parameter. When the propor-
tion equals to 0, then we do not have data from hospital 5 in the source; when
the proportion equals to 1, then all 1500 source examples are from hospital 5.
We initialize the model by training a ResNet classifier with data from hospital
1 to 4 in the source until its training accuracy reaches 0.7. That mimics the
scenario where a model must be adapted to a target facility, after having been
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Fig. 14 Model accuracy over bandit selection iterations in the Camelyonl7-wilds experi-
ment for generalization to hospital 5(section 5.2.1). The experimental settings are the same
as Fig. 12 except that data from hospital 5 are excluded from the source. In each ban-
dit selection, model accuracy stabilizes between 0.6 and 0.75. Performance has a positive
relationship with K, but does not have a clear dependence on split criteria.

initialized using others. At each bandit iteration, we update the model with
one selected source subset for 5 epochs. For source split criteria, we continue
to use hospitals, clusters, and random assignments.

Fig. 15 suggests that adding hospital 5 data points benefits cluster-based
bandit selection and random selection almost equally. In contrast, the hospital-
based selection starts with a lower performance at first, increases faster and
outperforms them within ten iterations. There is a distinct gap between the
performance of hospital-based selection and the rest. However, hospital-based
selection seems to benefit little from adding further samples from hospital 5,
and its advantage over others becomes less obvious when the source includes
as many data points from hospital 5 as data from any other hospital.
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Fig. 15 Transitional study: generalization accuracy over iterations in bandit selection with
“proportion” parameter denoted by columns (section 5.2.2). The format of each subplot is
the same as subplots in Fig. 12.

Fig. 16 explains the behavior of hospital-based selection. Good overall per-
formance results from the fact that hospital 5 is eventually selected with high
probability. Unstable initial performance comes from the randomness of ini-
tialization in bandit selection — by chance, the bandit may initially place low
weight on hospital 5. In contrast, in the other two scenarios, the training set
always contains data from hospital 5, regardless of the choices from the bandit
selection. This ensures a relatively high starting performance. Since the ban-
dit selection allows training examples being repeatedly chosen, increasing the
number of data points from hospital 5 in the source does not necessarily bene-
fit performance. In fact, performance even drops slightly when the proportion
is close to 1. An intuition behind this is, when we have few samples from hos-
pital 5, the algorithm tends to repeatedly select and train on the same data,
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while it tends to train on a variety of data points from hospital 5 otherwise.
In this sense, we don’t necessarily need as many samples from the source.
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Fig. 16 Hospital-based subset weights as iteration goes by in bandit selection of transi-
tional study (section 5.2.2). Target data consists of hospital 5 only, while source consists of
observations from all hospitals. Columns refer to the choices of “proportion” parameter and
subplots follow the same manner as Fig. 11.

We make two secondary comments on Fig. 15. First, similar behavior of
two repetitions suggests the robustness of the algorithm. Second, clustering
according to either deep or shallow ResNet feature yields similar results. This
contradicts the intuition that deep features may capture dissimilarity across
facilities. In this problem, in order to have good generalization on hospital 5,
we need to include (a few) data points from hospital 5, and allow weight to
concentrate on that source.

6 Conclusion

We have studied two source selection methods in out-of-distribution general-
ization problems. We demonstrate how our methods work in one simulated
and two real-life datasets, discussing reasons why selection may or may not
help across specific contexts. Both methods can also serve as diagnostics and
provide quantitative and qualitative illustrations of dataset heterogeneity. One
direction for further study is further investigation of criteria for source split-
ting. For example, the choice of data representations and number of source
subsets would benefit from further analysis.
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Appendix A Supplementary materials of
experiments on Camelyon
17-wilds datset

A.1 Model

Our training model is the ResNet model (He et al., 2016) with 18 layers pre-
trained by PyTorch (resnet18). In the experiments. we randomly select 5000
data points evenly distributed over hospitals and labels. The batch size is 16.
In the bandit selection of section 5.2.1, we add b = 30 data points from the
chosen source subset to the training data and train the whole model for 30
epochs at each of the H = 100 iterations. In the bandit selection of section
5.2.2, we initiate with the model trained on data points from hospitals 1 to
4 with training accuracy 0.70 (it hasn’t reached its capacity). At each of the
H = 100 iterations, we add b = 100 samples from one source subset into the
training set and train the model for 3 epochs.

In the case that we cluster the source via features, we extract the features
of the first and last convolutional layers by passing the source data (image
arrays) through the ResNet model we mentioned earlier. After that, we reduce
the dimension of either case into 50 using PCA. For simplicity, we denote the
resulting arrays of the first layer as shallow features and that of the last layer
as called deep features.

A.2 Experimental results

When we use hospital 1 as target and data from all hospitals as source and
perform a bandit selection, there isn’t a distinguishable difference between
learned mixtures and a random sample with respect to generalization perfor-
mance, regardless of whether we are using deep or shallow features, or how
many subsets we split the source into (Fig. Al). The behavior of summary
statistic between these two scenarios over iterations (Fig. A2 and A3) is also
similar: it goes down after a high initial value due to randomness, and then
decreases after the model converges since none of the subsets are selected. We
also notice that when we use hospitals to split the source, the bandit selection
isn’t dominantly selecting data from hospital 1 (Fig. A4). This suggests that
making predictions on hospital 1 doesn’t require such a source data selection
under this setting.

Hosptal

Accuracy

W0 25 s 75 10
Iterations

Fig. A1 Model accuracy over bandit selection. Target data consists of hospital 1 obser-
vations only, while source consist of observations from all hospitals. The experiment and
visualization settings are the same as Fig. 12 except that the target hospital is hospital 1.
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Fig. A2 Hospital-based subset weights as iteration goes by in bandit selection. The exper-
iment and visualization settings are the same as Fig. 13 except that the target hospital is
hospital 1.
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Fig. A3 Hospital-based subset weights as iteration goes by in bandit selection. The exper-
iment and visualization settings are the same as Fig. A2 except that the source is split
randomly.
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Fig. A4 Hospital-based subset weights as iteration goes by in bandit selection. The exper-
iment and visualization settings are the same as Fig. 11 except that the target hospital is
hospital 1.

Furthermore, we apply a source / target split where the source excludes
data from hospital 1, as what we have done for hospital 5 in section 5.2. There
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isn’t an obvious performance drop (Fig. A5). The summary statistic and source
subset weights also behave similar as the previous experiment (Fig. A6 and
Fig. A7). This confirms with the idea that in a diagnostic framework, we will
conclude that source selection isn’t that effective when our target is hospital 1.
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Fig. A5 Model accuracy over bandit selection. The experiment and visualization settings
are the same as Fig. Al except that we exclude data points of hospital 1 from the source.
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Fig. A6 Hospital-based subset weights as iteration goes by in bandit selection. The exper-
iment and visualization settings are the same as Fig. A2 except that we exclude data points
of hospital 1 from the source.
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A.3 Transitional study

As supplementary figures for the transitional study of Camelyonl7-wilds
dataset in section 5.2.2, Fig. A8 and Fig. A9 show the source subset weights
over the bandit selection when source is split by clustering ResNet features
and randomly, respectively.
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Fig. A7 Hospital-based subset weights as iteration goes by in bandit selection. The exper-
iment and visualization settings are the same as Fig. A6 except that we split the source
randomly.
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Fig. A8 Transitional study for cluster-based source split. The experiment and visualization
settings are the same as Fig. 16 except that the source is split by clustering (top) deep or
(shallow) ResNet representations.
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Fig. A9 Transitional study for randomly-split source. The experiment and visualization
settings are the same as Fig. 16 except that the source is split randomly.
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