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Abstract

High-throughput sequencing data lie at the heart of modern microbiome research. Effective analysis of these data requires careful
preprocessing, modeling, and interpretation to detect subtle signals and avoid spurious associations. In this review, we discuss how
simulation can serve as a sandbox to test candidate approaches, creating a setting that mimics real data while providing ground truth.
This is particularly valuable for power analysis, methods benchmarking, and reliability analysis. We explain the probability, multivariate
analysis, and regression concepts behind modern simulators and how different implementations make trade-offs between generality,
faithfulness, and controllability. Recognizing that all simulators only approximate reality, we review methods to evaluate how accurately
they reflect key properties. We also present case studies demonstrating the value of simulation in differential abundance testing,
dimensionality reduction, network analysis, and data integration. Code for these examples is available in an online tutorial (https://go.
wisc.edu/8994yz) that can be easily adapted to new problem settings.

Keywords: simulation; microbiome; power analysis; methods selection; methods assessment

Introduction
Microbial communities play a central role in human and ecolog-
ical health. Advances in sequencing technology and statistical
methods have made it possible to characterize these communities
at unprecedented levels of precision [1–3]. However, statistical
methods have to contend with microbiome-specific challenges,
like sparse read coverage, large library size variations, uncer-
tainties in the resolved taxa, and overdispersion [4–6]. These
difficulties intensify as scientific goals grow more complex. This
is especially evident as microbiome data analysis shifts away
from descriptive studies toward modeling that often requires
experimental designs with multiple batches, longitudinal sam-
pling, or complementary assays [7–9]. In this context, effective
use of statistical methods hinges on many steps: framing precise
questions, preparing suitable data, applying appropriate methods,
and delivering accurate interpretations.

Given the uncertainties present in real data, guiding analy-
sis using simulations where the ground truth is known can be
tremendously helpful. Simulation has a long history in shaping
microbiome data analysis. For example, McMurdie and Holmes
[4] applied rarefaction to datasets simulated from a negative
binomial model to clarify its impact on downstream inferences.
Similarly, Kodikara et al. [10] employed an autoregressive model to
assess method performance for longitudinal studies. In fact, most
methodological research requires benchmarking on simulated
data. Despite these strong precedents, the field is only beginning
to formalize, evaluate, and share reusable simulators. In par-
ticular, recent advances have proposed simulators that leverage

existing template data—real experimental data whose patterns the
simulator should mimic—thus simultaneously reducing devel-
opment time while improving fidelity. In the remainder of this
review, words in italic font are listed in our glossary of terms,
Table 1.

This review introduces readers to emerging trends in simu-
lation, walks through example use cases, and distills best prac-
tices. While research on simulation methods often emphasizes
realism of the simulated data, their applications are typically
only discussed at a high level. Here, we instead explore in-depth
applications of simulated data. We first review existing packages
and highlight their potential pitfalls (see Table 2). We then illus-
trate how researchers can get the most out of their microbiome
data through simulation for various analytical tasks, ranging
from effective experimental designs to data analysis strategies. In
particular, this review focuses on three use cases: power analysis,
methods benchmarking, and reliability analysis.

Power analysis is an important step in experimental design
that informs the sample size required to detect different effect
sizes, thereby enabling studies to be done with minimal resources,
and without compromising scientific integrity and rigor [11]. Sev-
eral power calculators have been proposed for microbiome studies
[12–15]. However, these tools lack the flexibility of full simulators,
which can be adapted to problem- and data-specific contexts.
Most power calculators are limited to case-control designs and,
without access to template data, they may make questionable dis-
tributional assumptions. In contrast, researchers using simulators
can ensure their models reflect important properties of template
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Table 1. A glossary of simulation terms

Term Definition

Covariate A biological or experimental characteristic of a sample that is thought to impact community profiles and is used to train the
simulator.

Copula A statistical approach for modeling correlation in non-Gaussian data, often used to model associations between taxa in a
community.

De Novo Simulator A simulator whose mechanism is defined without reference to external, template data.
Factor Model A model that induces correlation across features through latent variables. Like copulas, these are often used to induce

associations between taxa.
Fit-for-Purpose Approaches that assess simulation quality by referring to small subsets of taxa.
Global Evaluation Approaches that assess simulation quality by referring to the entire community (all taxa).
Marginal Distribution A probability model that reflects abundance patterns for a specific taxon.
Multivariate Model A probability model that reflects abundance patterns across the entire community (all taxa).
Outcome-Specific Evaluation criteria that target the simulator’s downstream application.
Reliability Analysis The use of simulated data to calibrate interpretations of real data analysis.
Semisynthetic Data The output from a simulator that has been designed to mimic external, template data.
Template Data Previously gathered experimental data that can be used to train a simulator.

data and can compare various design choices, like class imbalance
and sampling times, that go beyond sample size alone.

Benchmarking is essential for identifying the most suitable
method for a specific experimental design and data type [16].
Simulation is useful to benchmark methods when ground truth
is scarce. For example, in batch effect integration, it is impor-
tant to preserve biological effects, but these can be difficult to
pinpoint without simulations that provide some ground truth
(illustrated in the section “Batch effect ection”). Further, bench-
marking new methods on various plausible datasets provides
more insight than simply identifying the best performer in a
single simulation scenario. To this end, we can train a simulator
to emulate real data and then alter it to reflect multiple hypo-
thetical scenarios. Even when ground truth exists, simulations
help gauge robustness to dataset perturbations (e.g. reducing the
true effect sizes), and testing many simulated scenarios is often
easier than collecting multiple real datasets. Formal simulation
techniques provide a more automatic approach to benchmarking
and allow researchers to focus on data analysis and method selec-
tion, rather than spending time programming simulators from
scratch.

Reliability analysis can be enabled through simulation. Many
modern data analysis workflows lack sufficient theory to guide
practice, and simulations offer valuable sanity checks. For exam-
ple, simulation studies have found that sparse canonical corre-
lation analysis (sCCA) can result in high false discovery rates
[17, 18]. Although these studies were motivated by neuroscience,
sCCA is also widely used in microbiome data integration [19,
20]. In a similar spirit, the section “Omics data integration” high-
lights how data integration can introduce unexpected artifacts
into dimensionality reduction visualizations. Hence, simulations
help prevent misinterpretations that could misdirect research
priorities.

Comparing these use cases highlights key distinctions. Power
analysis is used to ensure studies have sufficient power (reduce
Type II error), while reliability analysis helps to guard against
incorrect conclusions (reduce Type I error). Benchmarking eval-
uates both types of error across a collection of methods and prob-
lem settings. By considering multiple methods and contexts, a
benchmark can yield more generalizable, rather than application-
specific, conclusions. Despite these distinctions, what power anal-
ysis, benchmarking, and reliability analysis have in common is
that they attempt to guide decisions during the measurement

and analysis process. Simulation is useful because it provides
a systematic way to formalize the trade-offs between decisions,
making it possible to test the strength of specific approaches
against a battery of “what if?” questions.

This review makes the following contributions:

1) Overview of simulation workflows: We describe the main
ingredients of modern simulation algorithms and associated
assumptions. This background ensures that methods are not
treated as black boxes and guides their effective use.

2) Evaluation criteria: We outline how to assess whether sim-
ulated data match the properties of previously observed
template data, and how simulated data can inform method-
ological improvements.

3) Case studies: We present realistic case studies (see Table 3)
demonstrating how simulation can support power analysis,
benchmark competing methods, and guarantee reliable con-
clusions.

This review is accompanied by an online tutorial (https://
go.wisc.edu/8994yz). Each chapter of the tutorial starts with a
dataset discussion, walks through the process of designing sim-
ulators, and applies the resulting models to address common
questions about microbiome experimental design, method bench-
marking, and result interpretation.

Simulation workflows
Simulators vary widely, and their realism and relevance to down-
stream tasks is context-dependent. To help navigate this land-
scape, we first categorize simulators and then outline the work-
flow for building and refining them.

De novo and template-based simulators. We first note the
distinction between de novo and template-based simulators. De
novo simulators require users to specify parameters related to
experimental design and distributional properties. These param-
eters cannot be automatically matched to real, template data. For
example, in the splatter simulator [21], users can include treat-
ment and batch effects, but these are drawn from the simulator’s
internal generation mechanism. In contrast, template-based sim-
ulators first estimate the impact of sample-level covariates using
real data. Though this does require an initial template, it can
lead to more realistic synthetic data. These data are often called
semisynthetic, reflecting the influence of the template. As many
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Table 2. An overview of packages that are available for microbiome community simulation. Models differ according to mechanisms
they use to estimate community structure and the scope of applicability to alternative experimental designs. For applications to new
environments or designs, the evaluation techniques described in the section ‘Evaluation’ can be used to compare candidates and gauge
simulator fidelity

Package name Probability mechanism Experimental Designs Notes

CAMISIM [34] Models taxon abundances with a
log-normal distribution and does not
account for featurewise correlation.

Supports separate modes for
case-control and time series designs,
including simulation of technical
replicates.

Used in the CAMI benchmarking
challenge [51, 52] and can output
read-level data (Illumina, PacBio, or
ONT).

DeepMicroGen [35] Combines recurrent network and GAN
architectures to model multivariate
changes over time.

Supports longitudinal designs with
regular spacing.

Parameters are difficult to interpret,
limiting potential for control.

MB-GAN [36] Trains a GAN to match a template
dataset, capturing both marginal and
multivariate structures.

Mimics the design of the template data,
but cannot be adapted to alternative
designs.

Primarily for Centered Log Ratio (CLR)
transformed data but applicable to
small sample sizes.

metaSparSim [37] Uses a hierarchical model to sample
biological composition (Gamma
distribution) and technical variability
(multivariate hypergeometric
distribution).

Does not include covariates during
parameter estimation but allows
changes post-estimation to reflect
experimental perturbations.

Preserves sparsity and mean-variance
profiles for individual taxa, with
cross-taxa correlation quality
depending on Gamma parameters.

miaSim [48] Simulates population dynamics based
on various interaction models, including
the generalized Lotka-Volterra model.

Supports time series designs with
potential environmental interventions.

Accompanied by an interactive Shiny
application but cannot be fitted to a
template dataset.

microbiomeDASim [32] Draws community profiles from a
zero-inflated, truncated multivariate
normal distribution.

Designed for longitudinal experiments
with user-specified trends (e.g.
quadratic and “hockey-stick”).

Only applicable to normalized
abundance tables.

MIDASim [31] Estimates marginals from empirical or
generalized gamma models, correlating
presence-absence patterns and
abundances via a copula.

Supports case-control designs with
varying sample sizes, sequencing
depths, and taxa presence and
abundance.

Scalable for both estimation and
simulation, with support for template
inputs and post-estimation
modifications.

scDesign3 [43] Applies GAMLSS to each feature, linking
them with a Gaussian or Vine copula.

Can include covariates during
estimation, enabling simulation of
arbitrary designs.

Originally developed for single-cell
applications, with similar models used
for microbiome data [53–55].

SimulateMSeq [46] Estimates separate parametric models
across subsamples of a reference
dataset, so model complexity grows
with reference sample size.

Supports inclusion of covariates and
confounder variables.

Originally developed to benchmark the
robustness and scalability of differential
abundance methods.

SparseDOSSA 2 [33] Simulates features from a zero-inflated
log-normal distribution, linking them
with a Gaussian copula with a
regularized precision matrix.

Does not incorporate covariates during
estimation, but allows post-estimation
changes that use them.

Previously validated on human gut and
vaginal microbiome data.

ZINB-WaVE [30] Simulates data from a zero-inflated
negative binomial model, incorporating
known covariates and low-rank latent
variation.

Can include covariates during
estimation, enabling simulation of
arbitrary designs.

Originally developed for single-cell
applications, with similar models used
for microbiome data [53–55].

Table 3. Summary of case study datasets and analysis goals

Study name Number of
samples

Number of
features

Analysis task Objective

ATLAS [65] 883 89 Differential abundance
testing

To select the appropriate differential abundance
method for a given experimental design and
data type.

Type 1 Diabetes [66] 101 427 Power analysis and
multivariate method

To compare complex experimental designs and
multivariate analysis approaches.

American gut microbiome [67] 261 45 Benchmarking network
inference

To evaluate different network inference
approaches under diverse network structures.

Anaerobic digestion [68] 75 231 Batch effect correction To give insights into the behavior of batch
integration methods.

Sepsis in ICU patients [69] 57 180 bacteria, 18
fungi, 42 viruses

Omics data integration To uncover whether different data modalities
(bacteria, fungal, virus) should be analyzed
together or separately.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/26/1/bbaf051/8006247 by guest on 14 February 2025



4 | Sankaran et al.

Figure 1. (A) Simulation design is an iterative process, where choices of probability distribution, experimental and biological covariates, and correlation
structure can be refined according to evaluation criteria that draw attention to differences between real and template data. See Fig. 2 for example
criteria. (B) Given a satisfactory simulator, the same workflow applies to power analysis, benchmarking, and reliability analysis. The initial simulator
can be modified to reflect hypothetical experimental or biological settings, like changes in the signal effect size or the sample size. Outputs from
competing approaches can be gathered and interpreted to guide experimental design and analysis.

public catalogs of 16S, metagenomics, and metabolomics data are
now available [22, 23], it has become easier for researchers to
access relevant template data for various possible analysis. We
caution that different research communities have used different
terms to describe the concept of template-based simulation. For
example, “semisynthetic” is used in metabolomics [24, 25] and
microbiome studies [26, 27], while “reference-based” is common
in single-cell genomics [28, 29]. Although de novo and template-
based simulators differ in their requirements, similar factors
guide their application. We will review these workflow considera-
tions next.

Formulation and application. In the formulation phase
(Fig. 1A), a simulation model is created by adjusting parameters
until the generated data pass a series of evaluation checks. In
the application phase (Fig. 1B), several altered versions of the
simulator can be defined according to the simulation study’s
goals. For example, to characterize false discovery rates, we can
introduce synthetic negative control features designed to lack
associations with the outcome. For each altered version of the
simulator, we can generate multiple datasets, apply candidate
analysis strategies, and gather summary statistics quantifying
their performance. We provide practical examples of both phases
in the “Case Studies” section.

The formulation phase relies on concepts from probability,
statistical estimation, regression, and multivariate analysis. Prob-
abilistic models enable sampling of new data with appropriate
distributional properties, multivariate models induce plausible
associations across multiple taxa, and regression methods
ensure that simulations reflect biological or experimental
influences.

Probability distributions
The choice of probability distribution dictates many properties of
the generated data. Distributions must be carefully selected, as
properties that might be easy to manipulate in one distributional
family might be difficult to modify in another. For example, spar-
sity can be more easily modified in a zero-inflated versus ordinary
negative binomial distributions. We first review univariate, then
multivariate distributions.

Univariate distributions for simulation. For a specific taxon,
we need to decide whether to simulate counts, proportions, or real
numbers. Count distributions can be used to simulate amplicon
sequence variant or metagenomics data before having applied
any transformations. Common count distributions include the
Poisson, negative binomial, and hypergeometric distributions. The
Poisson distribution arises when counting events that, though

individually unlikely, become common due to repeated oppor-
tunities for them to occur. For example, a stretch of DNA is
unlikely to align to any given read, but given enough reads, we
would expect a Poisson number of them to align. However, in
real data, this often gives a poor approximation—the variance
in observed counts is often higher than the Poisson can capture.
Such overdispersion is more appropriately modeled using the neg-
ative binomial distribution. Finally, if the data exhibit more zeros
than either Poisson or negative binomial distribution allows, then
zero-inflation can be employed to introduce additional sparsity,
as in zero-inflated negative binomial (ZINB) used in the single-
cell RNA-seq simulator ZINB-WaVE [30]. Alternatively, presence-
absence can be modeled separately from abundances, as in the
simulator MIDASim [31].

When data are transformed, count distributions no longer
apply. Depending on the transformation, different distributions
can be used to model nonnegative, interval, or arbitrary real
values. For nonnegative values, options include the truncated
normal, log-normal, or variants of gamma distributions. The
truncated and log-normal distributions enforce nonnegativity by
either truncating or exponentiating a normal distribution. These
distributions are used in microbiomeDASim [32], SparseDossa 2
[33], and CAMISIM [34]. Proportions within the interval [0, 1] can be
represented by beta, Dirichlet, or generalized Gamma distribution,
which include parameters for mean and concentration along
the boundaries. The simulator MIDASim uses this approach to
model relative abundance-transformed data. If data have been
transformed to include both positive and negative real values,
then they can often be modeled with normal or Student’s T
distributions, the latter being more appropriate when outliers
are present. Further, such transformations can enable generative
adversarial network models to perform well, as in simulators
DeepMicroGen [35] and MB-GAN [36]. Continuous distributions
can also be used as a preliminary sampling step for hierarchical
count models. For example, the means of a count model can
first be modeled as a Gamma distribution, allowing estimates
for rare taxa to borrow strength from more abundant taxa.
This hierarchical approach is used by metaSparsSim [37], which
draws Gamma marginal distributions for individual taxa before
sampling from a multivariate hypergeometric distribution for all
taxa jointly.

Multivariate distributions for simulation. It is important
that simulators generate realistic community profiles, capturing
relational, multivariate structure and not just univariate, per-
taxon abundances. Two common strategies for modeling these
associations are (i) learning a multivariate normal covariance
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in an appropriately transformed space or (ii) incorporating
shared latent variation across features (taxa). Strategy (i) uses
the multivariate normal distribution’s covariance parameter to
control the relationship between features. These multivariate
normal samples can then be transformed into sequencing-
specific data distributions. For example, this approach is adopted
by simulators using the Logistic-normal Multinomial distribution
[38, 39]. This method induces correlations across features by first
sampling from a correlated, multivariate normal distribution.
This correlated vector is transformed into a vector of proportions
using a log-ratio transformation. Given an overall sequencing
depth, simulated reads are then allocated to individual taxa based
on these proportions. Alternatively, a correlated multivariate
normal distribution can be transformed into a multivariate
distribution with known univariate marginals, a process known
as copula modeling [40, 41]. Copula models can be used even
when the marginals are drawn from different distributions. This
makes copulas easily adaptable, and they are used by simulators
MIDASim [31], SparseDOSSA 2 [33], and single-cell simulators
scDesign2 [42] and scDesign3 [43].

In contrast, strategy (ii) ties features together by assuming a
latent, low-dimensional vector. The shared source of variation
induces downstream correlations. This is often accomplished
through variations of factor models. For example, ZINB-WaVE simu-
lates entries from a model whose parameters vary according to a
low-dimensional latent vector representing unobserved sample-
level properties. Similarly, Latent Dirichlet Allocation assumes
that samples are drawn from a multinomial distribution whose
mean depends on a low-dimensional community membership
vector [44]. In both univariate and multivariate settings, inter-
pretable parameterizations can support modifications of the sim-
ulation mechanism. These modifications are helpful for vali-
dating workflows through computational negative or positive
controls. For example, the mean parameter of a negative bino-
mial model can be adjusted to reflect stronger or weaker treat-
ment effects. In contrast, flexible machine-learning-based mul-
tivariate simulators, like MB-GAN and DeepMicroGen, can be
challenging to alter in this way. Even if their simulated data
are realistic, it is difficult to control them and enforce desired
constraints.

Accounting for experimental and biological
factors
How can we model differences across experimental or biological
conditions? For example, a taxon’s abundance may change grad-
ually over time or may be a marker of disease status. In this case,
histograms of individual taxon abundances may reveal complex
patterns, like separate peaks for disease and healthy groups,
which cannot be captured by models that assume independent
draws from the same probability distribution. To simulate these
patterns, we can specify distributional parameters based on sam-
ple characteristics. In addition to producing more realistic data,
conditioning on sample covariates enables more precise control.
For example, simulators that take into account time or disease
status can generate data at a denser sequence of timepoints
or different sample sizes for healthy versus disease patients,
both of which can guide experimental design and method
benchmarking.

Many simulators are tailored to specific experimental designs.
For example, MIDASim [31] and SparseDOSSA 2 [33] support
simulation from case-control designs. In both simulators, some
taxa share parameters across case and control groups, represent-
ing synthetic negative controls. To create a subset of taxa that

differ across groups, representing synthetic positive controls, taxa
parameters can be allowed to vary. The greater the difference
between parameters, the stronger the true effect. These simula-
tors are particularly useful for power analysis and benchmark-
ing for differential abundance studies [45]. To gauge robustness
of differential abundance testing to unmeasured confounders,
the simulators from references [46, 47] support the inclusion of
confounders that are correlated with the covariates of interest.
Other simulators have been created specifically for longitudinal
designs. For example, microbiomeDASim [32] allows taxonomic
abundance to vary over time based on various plausible trends,
to mimic brief disruptions or gradual development. Similarly,
miaSim [48], CAMISIM [34], and DeepMicroGen [35] are designed
to capture longitudinal dynamics.

Though these simulators streamline work with specific exper-
imental designs, it can be useful to generalize and map arbi-
trary sample-level variables onto distributional properties. This is
especially valuable in multifactorial experiments, where multiple
biological or experimental characteristics can jointly influence
measurements. Such generalization also allows modeling inter-
actions or nesting between variables. For example, treatment
and control groups may have divergent temporal trajectories, or
treatments might have different effects across cohorts. For these
applications, parameters can be linked to sample covariates using
regression techniques. For example, in the scDesign3 simulator
for single-cell and spatial omics data [43], mean and dispersion
parameters are modeled as functions of sample characteristics
using generalized additive models of location, scale, and shape
(GAMLSS) [49, 50]. This flexibility allows simulated data to vary
smoothly over temporal or spatial coordinates. Similarly, in the
ZINB-WaVE simulator for single-cell RNA-seq data [30], sample-
level covariates can influence the mean, dispersion, and zero-
inflation parameters through a linear model beyond feature-level
properties, sample covariates can modify multivariate relation-
ships. For example, scDesign3 allows different copula covariances
to be used within prespecified groups of samples.

Evaluation
Evaluating synthetic data is a crucial step in data simulation to
assess whether the generated synthetic data closely mirror the
statistical properties of the original data. Without proper evalua-
tion, synthetic data may not accurately represent the underlying
distribution, potentially leading to biased models or incorrect
conclusions.

In evaluating synthetic data, three primary types of utility
measures can be used: fit-for-purpose measures, global (broad) utility
measures, and outcome-specific (narrow) utility measures [56] (see
Fig. 2). Fit-for-purpose measures provide an initial evaluation of
whether the synthetic data appear reasonably close to the real
data on relevant low-dimensional views, and they can be used to
improve the simulation approach [56]. In contrast, global utility
measures aim to assess the multivariate characteristics of the
data. Outcome-specific utility measures aim to quantify similar-
ity in analysis results or specific model parameters between real
and synthetic data.

Fit-for-purpose measures typically involve checking the
univariate and bivariate distributions of observed and synthetic
data. We divided these measures into two main types: univariate
and bivariate evaluations (Fig. 2A1-A2). In the former, we focus
on whether the marginal distributions of variables in the real
and synthetic data match. In the latter, we focus on whether the
pairwise relationships of variables in the synthetic data resemble
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Figure 2. Utility measures for synthetic data, including visual comparison (top) and quantitative measures (bottom). (A) Fit-for-purpose, (B) global
(broad), and (C) outcome-specific (narrow) utility measures. Fit-for-purpose and global utility measures both evaluate the similarity between synthetic
and real data without considering any analytical objective. In contrast, outcome-specific utility assess the similarity of analysis results or specific model
parameters using both real and synthetic data.

those in the real data, typically through bivariate distributions
and correlations. We further divide evaluation criteria into
graphical and quantitative measures. For example, graphical
measures include side-by-side box plots or empirical cumulative
density plots (univariate setting) and pairwise scatter plots or
correlation heat maps (bivariate setting). Quantitative measures
include the Kolmogorov–Smirnov (KS) test, the Wilcoxon Rank-
Sum test, or independence tests based on kernel density
estimation [57] (univariate setting) and the distance measures
between correlation matrices (bivariate setting). However, while
fit-for-purpose measures offer an initial assessment of synthetic
data quality, they do not account for the multivariate nature of
the data.

Global utility measures are built upon fit-for-purpose mea-
sures to evaluate the complex, multivariate nature of the data.
We again divide these into graphical and quantitative measures
(Fig. 2B). For example, graphical measures include Principal Com-
ponent Analysis (PCA) plots, which jointly project synthetic and
real data into a 2D space, or receiver operating characteristic
(ROC) curves, which use binary classification to separate syn-
thetic from real data, to determine if the synthetic and real
data can be distinguished. Quantitative measures include the
Friedman-Rafsky test [58] or propensity score-based [59] tech-
niques. Global utility measures provide an aggregated similarity
between simulated and real data. However, they do not guarantee
that specific analyses on real and simulated data will yield similar
results, as these measures do not consider a specific analysis
goal [56, 60, 61].

Outcome-specific utility measures are designed to assess the
simulated data for a particular analysis goal. Since there are
multiple analytical approaches, these utility measures can vary
significantly. For example, if the focus is on fitting a multiple
regression model between sequencing features and a biological
condition of interest, then we can compare regression coefficients
obtained when fitting the regression to either simulated or real
data. In this situation, a scatter plot can serve as a graphical

measure, and the correlation value between the parameters esti-
mated from real and simulated data can serve as a quantitative
measure (Fig. 2C). However, if the objective is to perform a cor-
relation analysis, like those which underlie microbiome network
models, then the evaluation should focus on comparing the corre-
lation matrices between the features in the real and the simulated
data (for an example of this comparison, see Section ‘Power
analysis for multivariate methods’). No single utility measure is
universally applicable. Therefore, performing several utility mea-
sures based on the specific objective of the simulation will help
modify certain aspects of the simulator, such as the selection of
distributions. Further, even once a realistic simulator is obtained,
it should be used with care. For example, conclusions based on
too few simulation replicates may not withstand scrutiny. More
generally, analysis of how simulators are used in practice have
found that researchers are systematically biased toward simula-
tion experiments that cast their methods in a favorable light [62–
64]. We hope that advances in simulator design and evaluation
help reduce the cost of implementing thorough experiments that,
more than acting as a rubber stamp, give insight into how to carry
out complex data analysis.

Case studies
Statistical power for univariate differential
abundance methods
Motivation. Differential abundance analysis is a cornerstone of
microbiome research. It is often used to highlight taxa that are
associated with disease or that respond to interventions. The
research community has developed various testing methods to
account for specific characteristics of microbiome data, such as
zero-inflation, overdispersion, library size differences, composi-
tionality, and small sample sizes [10, 31, 70]. However, assump-
tions that are reasonable in one microbiome system (e.g. the gut)
may not necessarily translate to others (e.g. marine). Applying
a method in an inappropriate context can lead to excess false
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positives or reduced power. Moreover, unlike classical two-sample
tests or linear models, differential abundance methods do not
come with closed-form formulas for calculating statistical power.
Therefore, semisynthetic simulation can give insights into the
properties of differential abundance methods for specific data
analysis applications.

We compared three common differential abundance meth-
ods commonly used in microbiome studies: DESeq2 [71], limma-
voom [72], and ANCOM-BC2 [73]. ANCOM-BC2 was developed
specifically for microbiome data, whereas DESeq2 and limma-
voom were originally designed for RNA-seq data. The goal of this
simulation is to select the most appropriate method for a specific
dataset based on statistical power across sample sizes.

Data. We analyzed data from the ATLAS study [65]. This study
profiled the gut microbiomes of n = 1006 healthy adult Europeans.
Notably, it discovered microbiome “tipping points,” which are
unstable community composition profiles that could “tip” into
more stable states. The competing stable states were related to
factors like age and body mass index (BMI). We filtered down to
the 89 most abundant genera in the 883 subjects with known
region membership and BMI within the lean, overweight, or obese
categories.

Simulation and evaluation. Our simulator follows scDesign3’s
modeling assumptions, applying a ZINB GAMLSS regression
where both the mean and dispersion for each taxon can vary as
a function of the BMI category. For the top 10 most abundant
taxa, we found that the boxplot quartiles and the observed
shifts across BMI groups were captured well in the simulated
data (Fig. 3A1). We compared the abundance of all genera in
simulated and real data for each BMI group using a kernel density-
based two-sample test [57, 74]. At least 70% of genera were
not statistically distinguishable (Fig. 3A2). As evident by these
evaluations, the simulated data were generally similar to the
original data. However, for some genera with positively skewed
distributions and a high number of outliers, such as Prevotella
melaninogenica et rel, the simulation failed to capture the high
degree of skewness or generate outliers, hence the significant
differences between the real and simulated data returned by
some of the tests.

Data analysis results. We simulated synthetic negative
controls by re-estimating a subset of genera so that the ZINB
means and dispersions did not depend on BMI. These genera
were declared not significant from a Wilcoxon Rank-Sum test of
association with BMI (P-values corrected for multiple testing with
0.1 FDR level). Such weakly associated genera have previously
been used to define pseudo-negative controls [75], whereas in
our simulator, these genera are genuine negative controls. These
simulation design considerations, as well as those for all other
case studies, are summarized in Table 4. We then simulated
datasets with sample sizes ranging from 50 to 1200, and applied
DESeq2, limma-voom, and ANCOM-BC2 using an FDR-control
level of 0.1. On average, DESeq2 had better power compared to
the other two approaches, and all three approaches provided valid
FDR control (Fig. 3B). The power increased most rapidly from 50
to 337 samples.

Summary. Differential abundance testing requires a delicate
balance. On one hand, parametric assumptions, like those for
overdispersion or zero inflation, can improve test sensitivity. On
the other hand, inappropriate assumptions can lead to invalid
results. Generic benchmarking studies can help identify the
appropriateness of each method for a given experimental design
and data type but can only provide blanket recommendations. In
contrast, we showed that simulations let us design “self-service”

benchmarks where we can run our own in silico experiments to
inform a statistical analysis workflow with more problem-specific
choices. An additional benefit is that we can ask how certain
changes to the data (e.g. increasing the sample size) might affect
method performance.

Power analysis for multivariate methods
Motivation. Differential analysis methods can draw attention to
significant taxa but can overlook important correlation struc-
ture within microbiome communities. To shed light on this more
global structure, multivariate analysis methods play an essential
role [76]. Theoretically characterizing the statistical efficiency
of multivariate methods is an active area of research [77, 78],
and practical sample size guidance typically relies on simulation
[79, 80]. However, effective community-wide simulation is more
challenging than what is required for differential abundance
analysis, because we must pay close attention to the quality of
the estimated correlations. In this case study, we explore how
semisynthetic data can inform sample size calculations in an
application that uses sparse partial least squares discriminant
analysis (SPLS-DA) [81]. SPLS-DA is a classification method that
makes use of correlations between input features to ensure stable
predictions in small sample size settings. In the process, it com-
putes a dimensionality reduction of the data analogous to PCA,
but with the explicit goal of separating classes.

Data. We revisited the Type 1 Diabetes (T1D) study from Gavin
et al. [66], who identified metaproteomic patterns in the micro-
biomes of T1D patients from a cohort of n = 101 study partici-
pants. We filtered down to the 427 proteins present in at least 70%
of either the T1D (n = 51) or control (n = 50) groups. Following
the original study’s data preprocessing, we applied a centered
log-ratio (CLR) transformation to the measured protein relative
abundances and then used these as predictors in an SPLS-DA with
T1D status as the outcome. We set the SPLS-DA hyperparameters
to 5 PLS dimensions and a selection of 30 predictors. On this
dataset, 10 repetitions of 5-fold cross validation yield a holdout
area under the receiver operating characteristic curve (AUROC) of
0.667 ± 0.037.

Simulation and evaluation. We fitted a Gaussian GAMLSS sim-
ulator, allowing means and variances for all proteins to depend
on T1D status. Since SPLS-DA models the relationships across all
proteins, we first applied a Gaussian copula using the standard
sample covariance to attempt to reflect the true correlation struc-
ture. Contrary to the last section, we focus here on the quality
of the simulated sample correlations rather than the univari-
ate simulation quality (which is covered in our online tutorial
section 3.3).

A simple histogram of pairwise correlations between features
in simulated data showed greater variability compared to the
observed data, suggesting that the simulation could be improved
using a regularized covariance estimator. We therefore used the
adaptive thresholding covariance matrix estimator of Cai and
Liu [82] (higher thresholds apply stronger regularization, while
lower thresholds reduce bias). To choose the threshold, we evalu-
ated the correlation quality across a range of candidate values
from 0.001 to 0.2 using two metrics: the KS statistic between
observed and simulated histograms of pairwise correlations and
the Frobenius norm between observed and simulated correla-
tion matrices. The KS statistic formalizes our histogram check,
while the Frobenius norm measures the differences between
these matrices. We found that the KS statistic was minimized
at 0.14, while the Frobenius error was minimized at 0.03. To
balance these two metrics, we chose a threshold of 0.1. To further
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Figure 3. Differential abundance analysis in the ATLAS study. (A1) Comparison between real and synthetic data for the 10 most abundant taxa. A
ZINB model achieves satisfactory performance in matching quartiles of the observed data. (A2) Quantitative evaluation between real and synthetic
data. Proportion of non-rejected tests from the kernel density-based global two-sample comparison test for each feature across BMI groups in real
and simulated data. Insignificant test results indicate that the kernel density estimates for the given feature in each BMI group cannot distinguish
between the real and simulated data. (B) Realized power and false discovery rates for the DESeq2, limma-voom, and ANCOM-BC2 methods applied to
the simulated data. Large samples lead to higher and less variable experimental power. FDR control is maintained on average.

check the simulator, we created pairwise scatter plots (Fig. 4A)
and heatmaps of real and simulated sample covariance matrices
(Fig. 4B). The heatmaps show similar blocks of positive or neg-
ative correlation. For the pairwise scatter plots, we filtered to a
subset of pairs with moderate positive correlations between 0.72
to 0.8 in the real data, as checking all 90K pairs is impossible.
The scatter plots of real and simulated data overlapped well.

The only notable differences were the streaks of exact zeros
in the real data, a reflection of the zeros present before CLR
transformation. Overall, the revised simulator with an adaptive
covariance estimator seemed sufficient for a power analysis with
SPLS-DA.

We next altered the fraction denoted π1 of nonnull proteins
whose means and standard deviations depend on T1D status.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/26/1/bbaf051/8006247 by guest on 14 February 2025



Microbiome simulation | 9

Table 4. Summary of simulation design considerations for the case studies. Abbreviations: power analysis (P), benchmarking (B),
reliability analysis (R)

Analysis task Kept from the template Simulator modifications Justification

Differential abundance
testing (P, B)

BMI effects for the ground truth
differentially abundant taxa.

Varies the proportion of ground
truth differentially taxa and
overall sample size.

BMI effects must be removed to create
synthetic negative control taxa.

Power analysis and
multivariate method (P)

T1D effects for the ground truth
differentially taxa; community
covariance.

Varies the proportion of ground
truth DA taxa and the overall
sample size.

Prediction performance is known to depend
on the sample size and the proportion of
relevant features.

Benchmarking network
inference (B)

BMI and sequencing depth
effects for all taxa.

Alters the ground truth
covariance structures are
substituted into the Gaussian
copula.

Covariance is a common target for network
inference methods, but no single edge pattern
is universally applicable.

Batch effect correction (R) Batch and treatment effects for
all taxa; community covariance.

Introduces a treatment group
with a weak effect.

Overintegration is especially problematic in
settings with weak signals.

Omics data integration (R) Sepsis and antibiotics effects
for taxa in the ITS and Virome
assays; community covariance.

In one setting, sepsis and
antibiotics effects are removed
from the 16S assay.

Dimensionality reduction plots should not
introduce spurious associations.

Figure 4. SPLS-DA power analysis for Type 1 Diabetes association. (A) Pairwise scatter plots for proteins with real-data correlation ranging from [0.72, 0.8].
Except for streaks at 0, a Gaussian copula appears to preserve associations between pairs of proteins. (B) A heatmap of the correlation matrices across
all proteins in the real and simulated data. Blocks of positively and negatively correlated proteins appear to be preserved in the simulation. (C) Prediction
accuracy of SPLS-DA across simulation settings. The x and y axes correspond to sample size and AUROC, respectively. Color corresponds to the number
of null features, 427 × (1 − π1), which governs the rate of power increase as a function of sample size.

We chose the nonnull proteins according to their P-values from
a Wilcoxon Rank-Sum test on the original experimental data.
We considered the most significant proteins as true signals in

the simulator. We then applied SPLS-DA with the pre-specified
hyperparameters to semisynthetic data of varying sample sizes,
with π1 ∈ { 10

427 , 30
427 , 50

427 , . . . , 110
427 }, giving coverage of settings where
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differentially abundant taxa range from rare (< 2.5% of taxa) to
relatively common (> 25% of taxa).

Data analysis results. When considering 20 samples total,
we found that the proportion π1 of true nonnull proteins has
little effect on average AUROC, which is only slightly better than
random (Fig. 4C). Larger π1 was associated with less variable
performance. When π1 = 110

427 , performance increased quickly
with sample size, plateauing at 110 samples. In contrast, for
π1 = 10

427 , performance increased more gradually, with room for
improvement even at 200 samples. Interestingly, performance was
relatively stable from π1 = 44

427 to 110
427 . Altogether, this analysis

suggested that if more than a few dozen proteins are thought to be
associated with the outcome, then between 110 and 155 samples
is sufficient. For fewer proteins, either a larger sample size or an
alternative analysis strategy should be considered. A sense of the
true proportion π1 of nonnull proteins can be gauged from the
distribution of P-values in the template data, using estimators
like those introduced in [83–85]. For these data, the true signal
appeared to be weak. For example, Storey’s estimator returned
π̂1 < 0.

Summary. We showed how semisynthetic data can help deter-
mine sample size for SPLS-DA applied to microbial proteomics.
While no formulas for statistical power exist for this method,
simulation allowed us to study how both experimental (sam-
ple size) and biological (proportion of nonnull proteins) factors
influence its performance. Further, we detailed the process of
evaluating the simulator’s correlation structure, demonstrating
how visualizations and metrics could be used to iteratively refine
a model.

Benchmarking network inference
Motivation. Network models give a holistic view of interactions
in microbial ecosystems. They can identify tightly connected
subcommunities and keystone taxa [86–88]. Unfortunately, vali-
dating these models is difficult, since determining ground-truth
edges typically requires low-throughput experimentation such as
knockout studies [89]. This creates a barrier to benchmarking,
both for their use in specific studies and for evaluating new
methodologies. Simulation can address these issues by providing
ground-truth edges.

We compared two methods: SpiecEasi [90], a graphical lasso-
based algorithm tailored to compositional data, and the Ledoit-
Wolf estimator [91], a covariance estimator created for high-
dimensional but low-rank data. A priori, we may expect SpiecEasi
to perform better on microbiome data, since it was specifically
designed for this purpose. However, this comparison has not
been previously reported, and it is also unclear if potentially
improved accuracy justifies the additional time required to solve
the SpiecEasi optimization problem. To help answer this question,
we can use simulations with known covariance structures.

Data. We analyzed the data from the American Gut Micro-
biome (AGM) project, a citizen science initiative where partici-
pants submit stool samples and complete detailed diet and health
surveys [67]. The study has revealed associations between survey
responses and microbiome composition. We considered a subset
of 261 samples available through the SpiecEasi package [92], after
excluding samples with fewer than 1000 reads. We filtered down
to a “core” gut microbiome [93] of the 45 taxa with an abundance
of over 100 in at least 50 samples.

Simulation and evaluation. We fitted a ZINB GAMLSS model
to these data using BMI and log sequencing depth as covariates.
The BMI term was included because the original AGM study [67]
found a significant association between BMI and microbiome

composition. The sequencing depth term allows samples with
deeper sequencing to have larger means on average across all
taxa. Note that, though we convert to compositions before apply-
ing SpiecEasi, our simulation operates on the scale of absolute
abundances, and this could influence conclusions. In simulation,
there is often the question of where in the measurement process
to generate data. This example simulates counts of identified
taxa, but we could have alternatively simulated sequencing reads
(further upstream) or compositional data (further downstream).
While simulations grounded earlier in the measurement process
apply more widely, they may be harder to match to template data
and use within the intended analysis.

The evaluations comparing real and simulated data are avail-
able in section 3.2 of the accompanying online tutorial. Here,
we focus on benchmarking estimator accuracy across several
network structures beyond those observed in AGM. We define
several ground-truth correlation structures representing different
statistical regimes: block, banded, Duncan-Watts small-world,
scale-free, and Erdoős-Rényi random graph structures [94]. The
block and banded covariances were defined directly, while others
were derived from Gaussian graphical models with the respective
structure, shown in Fig. 5A. For example, the scale-free network
had several hub taxa with high covariance across many neighbors,
while the Erdoős-Rényi network connected all pairs of taxa with
equal probability. Note that while our focus here is on covariance
matrix estimation, a similar study using known, structured preci-
sion matrices could also be implemented.

Data analysis results. Across network regimes, the Ledoit-
Wolf estimator had larger bias but lower variance compared to
SpiecEasi (Fig. 5B). Since both estimators are regularized, they
exhibited some bias toward correlations with smaller magnitudes.
The Ledoit-Wolf estimator performed better in the banded and
block settings, while the two approaches were comparable in
other cases. All methods were challenged in the Erdoős-Rényi set-
ting, often declaring large correlations for taxa with no true rela-
tionship. Interestingly, in the block covariance scenario, SpiecEasi
estimated many exact zero correlations as slightly negative. This
is a consequence of SpiecEasi’s compositional assumption, which
induces negative correlation across taxa. In spite of this artifact,
the block covariance setting appeared to support more efficient
estimation than any of the other covariance settings we consid-
ered. Thus, if we assume that a community has a block correlation
structure, then fewer samples may be required. This is consistent
with general statistical theory, which argues that low-dimensional
block structure can greatly simplify high-dimensional covariance
estimation [95].

Summary. We showed that simulations offer a useful lens for
comparing network inference methods across diverse network
structures while maintaining realistic abundance distributions.
Starting from a single template dataset, we were able to simulate
according to several types of ground truth correlation, enabling
us to identify settings where methods are more likely to fail or
succeed.

Batch effect correction
Motivation. In large microbiome studies, it is often difficult to
guarantee uniform data collection and processing for all samples,
leading to systematic differences across experimental groups,
often referred to as batch effects [96, 97]. For example, storing
samples at different temperatures might change the abundances
of taxa whose marker gene sequences degrade more rapidly
at some temperatures. Failing to address these batch effects
can limit power by masking treatment effects. They can also
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Figure 5. Benchmarking network methods for American Gut Microbiome project. (A) Ground truth correlation matrices used in the simulation study and
(B) estimates made using SpiecEasi and the Ledoit-Wolf estimator. Entries

(
j, j′

)
in the matrices of (A) provide the copula correlation between taxa j and

j′ before transformation using the ZINB model. From (B), SpiecEasi tends to have lower bias, since it is generally centered along the ground truth black
line, but higher variance, since its vertical spread is larger. This figure also highlights settings where estimation tends to be easier (block and banded)
and more difficult (Erdoős-Rényi).

compromise validity by introducing spurious differences across
treatment groups [98]. Hence, a common preprocessing step in
microbiome data analysis is to apply batch effect correction to
standardize data across batches [99, 100].

Despite their increasingly widespread adoption in microbiome
studies, batch effect correction methods must be applied
carefully. Failing to account for the correction in downstream
differential tests can lead to miscalibrated P-values [101] or
performance estimates [102]. Further, it can be difficult to balance
underintegration, where batch effects persist post-correction,
against overintegration, where aggressive batch effect correction
eliminates meaningful biological variation [103]. It is often
unclear in advance whether these issues will arise for a given
dataset or batch effect correction method. By defining ground-
truth batch and biological effects, simulations give a way to
evaluate batch effect correction methods and their impact on
downstream inferences. Moreover, they allow quick comparison
of methods across experimental designs and biological scenarios,
allowing more complete evaluation than is possible in isolated
benchmark datasets.

Data. We analyzed a study of anaerobic digestion (AD). AD is
a biodegradation process underlying many bioenergy production
technologies. The study Chapleur et al. [68] profiled the micro-
biomes from AD samples treated with phenol, a micropollutant
that affects biodegradation efficiency and stability, posing chal-
lenges for large-scale industrial deployment. We use a subset of 75
samples and 231 genera discussed in Wang and Lê Cao [96], which
focused on changes in community composition under two phenol
concentrations. Since obtaining samples is time-consuming, the
experiment was carried out over five sessions, leading to batch
effects visible in the PCA plot in Fig. 6A.

Simulation and evaluation. The purpose of this simulation
experiment is to compare the performance of RUV-III [104] and
ComBat [105], two batch-effect correction methods, when applied
to data like those in the AD study. We used the CLR-transformed
AD dataset as our simulation template. For each taxon, we applied
a Gaussian GAMLSS and copula model with batch and treatment

status as covariates. Given the relatively small sample size, we
used an adaptive thresholding covariance matrix estimator [82]
within the Gaussian copula. PCA on data simulated from this
model revealed that the simulator could recapitulate the observed
batch effects. We can evaluate this more precisely using a narrow
utility evaluation, comparing the RUV-III batch effect regression
coefficients from the real and simulated data. For each taxon,
a regression coefficient was calculated using AD as the factor
of interest. The regression coefficients from the simulated data
closely matched those from the real data, with an overall correla-
tion of 0.89 (Fig. 6B).

Batch effect correction methods are known to be sensitive to
imbalance between true biological groups [97]. We next explored
whether this could pose a challenge in AD studies if we considered
an additional phenol concentration treatment level. We simulated
a hypothetical scenario where a stronger treatment had been
applied to a small subset of samples. Each batch was assigned
15 samples at the reference concentration (t = 0) and the previ-
ously observed comparison group (t = 1), but only six at a new,
hypothetical treatment (set to t = 1.8). Relative to the reference,
this new treatment level is anticipated to perturb the microbiome
community in the same direction as the original t = 1 group, but
to a greater extent. Since this treatment group is less frequently
sampled, there is a risk that its effect might be masked by overly
aggressive batch integration.

Data analysis results. We compared the results of RUV-III
and ComBat applied to data simulated from our altered experi-
mental design (Fig. 6C). The simulator generated data with clear
batch and treatment effects (first row). Although we observed a
lack of replication structure for some of the batches in Fig. 6A,
the simulated data preserved sufficient batch effects to eval-
uate batch effect correction methods. We then compared the
PCA projections when RUV-III and ComBat were applied to the
simulated data. RUV-III requires users to specify pseudocontrol
features, which are assumed to be unaffected by biological fac-
tors, and the experiment’s replication structure. We set pseudo-
controls to be taxa that were not significantly associated (q =
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Figure 6. Assessing batch effect correction methods in an AD study. (A) A principal components plot of the original AD dataset reveals significant
batch-to-batch variation. For example, all experimental samples generated on 14 April 2016 are shifted toward the bottom-right quadrant. Note that
the technical replication structure is also visible, for example, the clusters of untreated samples from 01 July 2016 on the left-hand side. Though the
two phenol concentration treatments can still be distinguished from one another, removing the batch effect can improve power. (B) Narrow evaluation
using a scatterplot and correlation coefficient to compare the RUV-III batch effect regression coefficients for each taxon in real and simulated data.
(C) Original and batch corrected data in the simulation with a new, less frequently sampled treatment group (t = 1.8) introduced. Batches (columns)
have been sorted from the lowest to the largest average PC1. Both RUV-III and ComBat successfully remove systematic differences between batches, but
in some cases, ComBat removes true differences between the t = 1 and t = 1.8 groups. Note that the principal components are derived separately for
each row.

0.05) with concentration in an initial multiple testing screen that
used a linear model with batch and concentration as covariates.
Replication structure was set to the biological sample ID. Both
methods centered all batches around the origin, as expected from
a batch effect correction method. However, the t = 1.8 group
was less clearly separated from the t = 1 group in the ComBat
output compared to either the original simulation or the RUV-
III corrected data. For a more quantitative analysis, we trained a
linear discriminant analysis to predict the treatment group from
the first two principal components, yielding a classification accu-
racy of 73.9% on the original simulation, 78.3% on the ComBat
correction, and 88.3% on the RUV-III correction. These classifica-
tions performance results suggest that ComBat may overintegrate
imbalanced data, while RUV-III preserves more subtle treatment
differences.

Summary. We illustrated how simulation can give insight into
the behavior of candidate batch integration methods in a way that
is tailored to specific data analysis contexts, with the opportunity

to create new treatment scenarios not present in existing real-
data benchmarks.

Omics data integration
Motivation. A single assay can only give a partial view of a
microbial ecosystem. For example, 16S rRNA sequencing data
characterize bacterial community composition within a sample,
but other kingdoms, metabolites, and host cells shape microbiome
properties. To capture these features, different sequencing meth-
ods conducted on the same samples (e.g. ITS for fungi) or profiling
techniques (e.g. NMR for metabolites) are needed. By analyzing
the complementary views offered from diverse datasets, it is pos-
sible to develop a more holistic understanding of an ecosystem’s
biology [20, 106, 107].

Effectively analyzing these data, however, is challenging, with
no consensus on how integration strategies should be deployed
across contexts. The statistical task is not simply multivariate but
also multiassay, linking tables influenced by diverse biological or
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experimental factors. It is necessary to decide on which datasets
to integrate, how each table should be normalized, and which
integration method might be appropriate. Simulation can give a
controlled, simplified setting within which to compare analysis
strategies and can help to predict method performance under
realistic biological scenarios. That is, simulation can guide reli-
ability analysis for data integration.

Integration methods often return a dimensionality reduction
plot designed to uncover shared covariation across assays, analo-
gous to how PCA arranges samples to describe variation within
a single assay. It is critical that these methods faithfully pre-
serve between-assay and between-sample relationships. Ideally,
data integration dimensionality reduction will highlight genuine,
shared axes of variation across data sources while avoiding the
appearance of false associations between unrelated data sources.
We design a simulation to assess the extent to which these plots
can misleadingly suggest similarities in inherently “unalignable”
assays [108]. This multi-assay analysis parallels the multi-batch
problem discussed in the previous case study—instead of study-
ing overintegration across batches, we consider overintegration
across assays.

Data. We re-analyzed the data from Haak et al. [69], who
studied how the gut microbiome is altered during sepsis in ICU
patients. Sepsis can be triggered by microbial infection unre-
lated to bacteria (e.g. from the Candida fungus). Therefore, each
sample was profiled using ITS amplicon and Virome sequenc-
ing in addition to 16S rRNA sequencing. Since sepsis is treated
with antibiotics, the study included healthy patients undergoing
antibiotics treatment. The study included 20 healthy controls,
23 sepsis patients, 5 healthy patients on antibiotics, and 9 ICU
patients without sepsis. After applying the same filtering as [69],
we obtained measurements for 180 bacterial genera, 18 fungal
genera, and 42 viruses.

Simulation and evaluation. We considered the multiblock
SPLS-DA method to integrate these class-labeled sequencing
datasets [109], and simulated from the scenario where the
class label was relevant only for a subset of tables. This could
occur if any of the three kingdoms assayed were unrelated to
sepsis or antibiotics. An ideal multiassay integration in this
setting would recover the similarities in the abundance profiles
across kingdoms (e.g. revealing shared clusters of samples)
while avoiding introduction of false relationships with sepsis
or antibiotic status. Note that multiblock SPLS-DA is the multi-
assay extension of SPLS-DA (discussed in the section ‘Power
analysis for multivariate methods’) and replaces the SPLS-
DA objective with a weighted average of covariances across
pairs of tables. We applied a Gaussian GAMLSS simulator to
each assay, as they were already normalized. For the ITS and
Virome assays, we allowed means and variances for each feature
to depend on a categorical feature encoding both ICU and
antibiotic use. For the 16S data, we used two simulators: one
which conditioned taxonomic abundances on ICU/antibiotics
category and one which did not. We joined all tables using a
Gaussian copula with an adaptive covariance estimator to handle
high-dimensionality. Therefore, in the ground truth simulation,
the marginal (taxon-level) and covariance (community-level)
structure from the template data are maintained. However,
while the sepsis and antibiotic factors continue to influence
all the ITS and Virome measurements, this relationship has
been deliberately removed from one of the two simulated 16S
datasets.

This design allows us to study the extent to which integration
can spuriously introduce sepsis or antibiotic associations into

the 16S data. Specifically, we then compared multiblock SPLS-DA
output on the original and both versions of the simulated data
(Fig. 7).

Data analysis results. We find that, even after removing all
association between 16S abundances and the class label, the
multiblock SPLS-DA projections for the 16S block still separated by
class, albeit more weakly than before. This is a consequence of the
analysis’ multiblock nature: strong class associations from other
tables can be artificially introduced into the 16S table. Indeed,
part of the objective of the multiblock SPLS-DA algorithm is to
maximize similarity in projections across all tables. In this case,
in the real data, the class differences in the 16S data were much
larger than those seen in this null scenario. Thus, simulation can
guarantee reliable conclusions for complex integration tasks.

Further, to decide on which tables should be analyzed together,
or separately, we calculated alignment measures [108] on the
real data and compared them with a synthetic null where the
tables are not alignable. We study the distribution of canonical
correlations in both the observed and synthetic negative control
data when integrating the Virome and 16S data together (Fig. 8).
The control was defined so that the two tables are known to have
no correlation within the underlying copula model. The results
showed the presence of slight, but systematic, shared variation:
observed canonical correlations were consistently larger than
those in the synthetic null for the top dimensions, but the increase
was quite modest. This suggests that substantial variation is iso-
lated within the tables in a way that an integrated analysis cannot
capture, motivating the use of within-table analyses alongside
integrative methods.

Summary. Analogous to using negative controls in biological
experimentation, we created synthetic negative controls in a com-
putational workflow for data integration. This allowed us to gauge
evidence for potential discoveries in real data, and prioritize either
simultaneous or table-specific analysis based on departures from
the synthetic negative control setting.

Discussion
We have reviewed the potential to apply simulators to microbiome
study design and analysis. We have considered advances that
make simulators more broadly applicable than their predecessors
and have provided reproducible case studies showing how they
can offer ground truth for evaluating FDR and power (sections
“Benchmarking differential abundance methods and statistical
power for univariate methods” and “Power analysis for multivari-
ate methods”), help identify regimes where competing methods
differ (sections “Benchmarking network inference” and “Batch
effect correction”), and ensure valid interpretation of statistical
outputs (section “Omics data integration”).

We have emphasized methods for evaluating simulation
quality, introducing vocabulary for distinguishing between fit-for-
purpose, narrow, and global metrics. These metrics can be used
both to compare simulation packages, like those listed in Table 2,
and to refine initial simulator formulations. Moreover, this review
has identified criteria for determining a simulator’s relevance to
specific applications, including distributional assumptions, ability
to match a template, handling of multivariate relationships, and
incorporation of experimental or biological effects. Between sim-
ulators, there are trade-offs between faithfulness, controllability,
and generality of application, and the most appropriate approach
will depend on the relative importance of these factors.

A key insight of modern simulation is that models can be
trained on real experimental data from related contexts. A
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Figure 7. Using simulation to understand properties of omics data integration methods in a transkingdom analysis. Columns correspond to three
amplicon sequencing datasets for transkingdom analysis of sepsis from Haak et al. [69]. Multiblock SPLS-DA projections from real and simulated data
are given in the first two rows. The bottom rows show a perturbed simulation where all associations in the 16S data have been removed. The fact that
between-group differences are still visible reflects the cross-table reduction and serves as a null reference for reliability analysis.

Figure 8. Comparison between canonical correlations in real (red) and
reference null (beige) samples in a transkingdom analysis. For the first 20
dimensions, the real canonical correlations are slightly larger than those
in the synthetic null. These dimensions are likely to reflect true, if modest,
shared variation across tables.

semisynthetic approach can enhance simulation quality and
requires less implementation effort compared to designing a de
novo mechanism. However, it is worth cautioning that even a
simulator that perfectly emulates a template dataset may still be
unhelpful if the template is not a good match to the motivating
problem. There is a trade-off between using template data from
pilot experiments, which are small but highly representative of
future conditions, and large public databases, which offer more
data but may not directly relate to the problem of interest.

There is a close connection between semisynthetic simulation
and statistical plasmode simulation [110, 111]. Plasmodes are data
where aspects of the measured system are known in advance,
for example, data that include a spike-in control. Analogously,
statistical plasmode simulators are resampling-based methods
that introduce a fixed parametric component. For example, a
plasmode approach to a linear regression simulator may resample
covariates but generate the response using a known coefficient
vector. Both plasmode and semisynthetic approaches to sim-
ulation use templates to improve simulator realism. However,
plasmode models bypass simulation for some variables by directly
resampling them from the template.

We expect future simulators to support workflows with novel
data modalities and their combinations. For example, while we
considered integration across batches and assays, their hetero-
geneity was mild. Developing simulators that model variation not
just across batches but across cohorts, and not just for different
amplicon technologies but for entirely different assay types, is
a worthwhile direction for further study. Moreover, though we
focused on simulating community taxonomic and metabolomic
profiles, methods for simulating metagenomics reads have also
been proposed [112–114], and incorporating template data into
read simulation could allow systematic study of entire processing
and analysis pipelines, similar to recent advances in single-cell
read simulation [115].

As simulators become easier to develop and apply, the potential
for reusing others’ work will increase. For example, instead of cre-
ating one-off simulators for the power analysis in a grant proposal
or the simulation study in a methods paper, researchers could
borrow and modify existing simulator definitions and output.
Curating repositories of reusable simulators, where the template
data and generating mechanisms are specified, would be valuable.
While we have focused on researcher-level power analysis, bench-
marking, and reliability analysis, simulation also has the potential
to resolve field-level controversies. For example, no consensus
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has emerged for the analysis of strain-level variation, with some
researchers emphasizing their importance to health outcomes
[116] and others cautioning against attempts to detect them with
existing technology [117, 118]. Simulation can provide the ground
truth and control necessary for fine-grained discussion of these
issues. Indeed, it has already played an important role in a debate
about the use of supervised normalization in microbiome data
[119, 120]. As techniques become more powerful and accessible,
computational studies using semisynthetic data will become an
important part of microbiome research toolkit.

Key Points

• Semisynthetic simulators differ from de novo simulators
by being trained on an experimental template, allowing
them to more accurately reflect the properties of real-
world data, and are an important recent development in
approaches to microbiome simulation.

• Aspects of simulator design, like how experimental fac-
tors or multivariate associations are modeled, result
in trade-offs in simulator generality, faithfulness, and
controllability, which are essential considerations when
choosing between simulators.

• Despite advances in simulation methodology, all simu-
lators only approximate reality, and it is important to
evaluate them according to relevant criteria, including
fit-for-purpose, global, or outcome-specific metrics.

• Microbiome simulators can be used for power analysis
and benchmarking for a variety of microbiome analysis
tasks, including differential abundance testing, network
analysis, and data integration.

• We have prepared an online tutorial with public data
and reproducible code examples, making it easy to adapt
the microbiome simulation concepts reviewed in this
article to practical problems encountered in microbiome
research.
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