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Abstract

Dimensionality reduction of spatial omic data can reveal shared, spa-
tially structured patterns of expression across a collection of genomic fea-
tures. We study strategies for discovering and interactively visualizing
low-dimensional structure in spatial omic data based on the construction
of neighborhood features. We design quantile and network-based spa-
tial features that result in spatially consistent embeddings. A simulation
compares embeddings made with and without neighborhood-based fea-
turization, and a re-analysis of [Keren et al., 2019] illustrates the overall
workflow. We provide an R package, NBFvis, to support computation
and interactive visualization for the proposed dimensionality reduction
approach. Code and data for reproducing experiments and analysis is
available at https://github.com/XTH1114/NBFvis.

Spatially resolved omic technologies provide a view into the landscape of
complex biological processes [Burgess, 2019, Nawy, 2018]. For example, they
have revealed novel aspects of tissue differentiation and the structure of cer-
tain cancers [Rao et al., 2021, Yoosuf et al., 2020]. A spatial transcriptomic
or proteomic dataset can be viewed as a spatially indexed collection of high-
dimensional vectors [Dries et al., 2021a]. The coordinates of each vector corre-
spond to different genomic features (genes expression and protein measurements
for spatial transcriptomics and proteomics, respectively) while the spatial index
locates each measurement at some location in a tissue or cell.

Two challenges in the analysis of spatial omic data are,

• Microenvironment dimensionality reduction: Considering the large num-
ber of simultaneously measured genomic features, some form of dimen-
sionality reduction is essential for effective exploratory analysis. However,
for spatially resolved data, a dimensionality reduction should describe mi-
croenvironments and their relationships with one another. It is more useful
to embed the genomic signature of a cell’s local neighborhood than simply
the cell in isolation.

1

ar
X

iv
:2

11
2.

00
90

2v
1 

 [
st

at
.A

P]
  2

 D
ec

 2
02

1

https://github.com/XTH1114/NBFvis


• Streamlined navigation: Low-dimensional representations of microenvi-
ronments may not be interpretable on their own. To this end, it is helpful
to relate the representations the to their original spatial and genomic con-
texts. Ensuring that these correspondences can be explored efficiently is
a challenge in itself.

This paper discusses methods to address these challenges and releases a
new R package that implements them. For first challenge, our approach is
to featurize spatial neighborhoods and pass this representation to downstream
dimensionality reduction techniques. We explore in depth features based on
(1) histograms of expression levels and (2) local cell network properties. For
the second challenge, we design an interactive visualization that links learned
representations with contextual descriptors.

We evaluate these methods using simulation and a qualitative data analysis.
The simulation clarifies the difference between learning representations on in-
dividual cells and local cellular neighborhoods. The data analysis recapitulates
the findings of [Chen et al., 2020, Keren et al., 2019]. We believe that the main
advantages of the proposed approach are,

• Modularity: The approach can be make use of existing dimensionality-
reduction methods while ensuring that results reflect meaningful spatial
structure.

• Flexibility: Spatial featurizations can be tailored to specific problem con-
texts with little changes to the overall workflow.

Our methods are implemented in the R package NBFvis, available at https:

//github.com/XTH1114/NBFvis.
The remainder of the paper is organized as follows. Section 1 reviews relevant

literature on analysis of spatial omic data. Section 3 describes the proposed
method. Section 4 introduces what kinds of visualization and interactivity are
provided in our package. Sections 2 and 5 illustrate the method in simulation
and real data analysis. Section 6 gives an overview of NBFVis’s functionality.
We conclude with a summary and directions for future work in Section 7.

1 Background

The proliferation of spatial omic data has attracted attention from the modeling
and visualization communities. Important themes that have emerged include
the selection of spatially varying genes, derivation of spatial summary measures,
and discovery of spatially consistent microenvironments. The resulting software
packages allow analysts to generate overviews of spatial variation as well as
focus on specific genomic features of interest.

Several studies propose feature-level models of spatial variation to select
those with notable spatial expression patterns. SPARK fits a collection of ran-
dom effects models with diverse set of kernels to capture variation at several
spatial scales Sun et al. [2020]. Alternatively, [Zhu and Sabatti, 2020] computes
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a measure of spatial variation based on a spatially induced graph laplacian;
genes exhibiting similar patterns of spatial expression are then clustered. Alter-
natively, [Hsu and Culhane, 2020] proposes an adaptation of Moran’s I-statistic
to measure the extent of spatial clustering across cell types, highlighting the
potential for the classical spatial statistics methods to support modern spa-
tial omics analysis. Like NBFVis, these methods compute spatial statistics to
summarize spatial omic datasets. However, they tend not to provide localized
measures of spatial structure, focusing instead on tissue-level properties.

The Giotto package includes approaches to dimensionality reduction and
interactive visualization of spatial omics data Dries et al. [2021b]. Of particular
interest, the package supports interactive visualization that dynamically links
embeddings of expression measurements with corresponding cell locations. Note
however that these embeddings are derived without reference to spatial features.

Similar to our approach, Spatial-LDA proposes a variation of the topic mod-
els that learns spatially consistent patterns of cell type mixing [Chen et al., 2020].
This is achieved by tying together mixed memberships of neighboring cells in a
structured prior, and the model is fit using a custom optimization scheme. Re-
gions with similar topic memberships can be interpreted as microenvironments.
Our proposal has a similar data analytic goal; however, we aim to support more
generic spatial features while preserving simplicity in implementation.

2 Simulation

We provide a toy simulation to clarify the differences in embeddings when neigh-
borhood information is and is not used. We find that if only cell-level informa-
tion is considered, the embeddings will be dominated by cell types and fail to
reflect microenvironment structure.

2.1 Dataset construction

Assume that there is one tissue section with three cell types. For each cell, five
proteins are measured. Different cell types have different protein profiles, which
means the average measurements of proteins differs according to cell type. We
assume that cell types are clustered spatially, but that these clusters are close
enough so that some areas overlap. These overlapping areas can be consid-
ered different microenvironments, since the local mixture of protein profiles is
different from regions of pure cell types.

Figure 1 is the spatial plot for the simulated dataset. Two thousand “cells”
are generated and divided into three different cell types according to a multi-
nomial distribution with the probability (0.2, 0.3, 0.5) for Cell Type 1, 2, and
3,

ci ∼ Mult (2000, (0.2, 0.3, 0.5)) , i = 1, . . . , 2000,

where ci is the cell type of the ith cell.
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Figure 1: Simulation of a tissue section with three different, partially overlapping
cell types. Overlapping regions can be thought of as their distinct microenviron-
ments. The goal is construct embeddings that reflect different mixing patterns.
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For this demonstration, we imagine that protein abundances are drawn from
a mixture of multivariate normals. The average of each mixture component
represents the typical cell profile for each cell type. That is, for each cell, the
measurements for each of the five proteins has the form,

pi|µci ∼ N (µci , 5I5), i = 1, . . . , 2000

µj ∼ N (0, 8I5) , j = 1, 2, 3,

where µj is the average protein profile for the jth cell type and pi is 5-dimensional
measurement for the ith cell.

Next, we simulate cell locations to get mixed spatial patterns. We use a
different mixture of (now two-dimensional) multivariate normals. As before,
component means center1, center2, and center3 are drawn from a multivariate
normal. Denoting the coordinates of cell i by (xi, yi) and the spatial mean of
cell type j by centerj , we draw,

(xi, yi)|centerci ∼ N (centerci , 2I2)

centerj ∼ N (0, 10I2) .

After simulation, we obtain a 2000× 5 expression matrix, each row of which
corresponds the simulated observation of one cell. We call this matrix the “single
cell matrix.”

To extract neighborhood information for each cell, we first find neighbor-
hoods with a given radius (here we use 0.2 units in length). We then calculate
statistics within each neighborhood. We choose quantiles of protein content as
neighborhood-based statistics, which are simple but effective. For every cell
and protein, we derive 21 quantiles q0, q0.05, ..., q1 in the neighborhood. Af-
ter calculation, an extended 2000 × 105 matrix is obtained. We call this the
“neighborhood matrix.”

2.2 Comparison

We next apply dimensionality reduction methods to both the single cell and
the neighborhood matrices, in order to clarify the difference in the resulting
embeddings.

First, we apply Uniform Manifold Approximation and Projection (UMAP)
McInnes et al. [2018] to the single cell matrix, whose low-dimensional embed-
dings are shown in Figure 2. Only three separate clusters are visible in the
embedding plot, each corresponding to a cell type. These UMAP embeddings
ignore the microenvironments of mixed cell types along cluster borders in the
spatial plot. This result indicates that, when spatial information is not directly
incorporated, the low-dimensional embeddings are dominated by cell types and
fail to distinguish microenvironments.

In contrast, the embedding plot of the neighborhood matrix detects microen-
vironment structure; see Figure 3. We notice that there are still three clusters
consisting of pure cell types. However, there are additional clusters of mixed cell
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Figure 2: A UMAP embedding plot on the single cell matrix. Cell types clus-
ter with one another, but different mixture patterns are not observed. The
embeddings are dominated by the cell types, obscuring the presence of microen-
vironments.

types. Between the three pure clusters is a region corresponding to microenvi-
ronments with mixed cell types in the spatial plot. Furthermore, we notice that
this region can be further divided into spatially consistent “subcluters.” For
instance, one region with only blue and green cells is related to the blue-green
spatial boundary. This can be treated as a unique microenvironment. Similar
red-blue and red-green regions are also visible.

In summary, UMAP embeddings using the single cell matrix are dominated
by cell types and fail to detect microenvironments with mixed cell types. How-
ever, by simply applying UMAP to the neighborhood matrix, we are able to
detect these spatially meaningful microenvironments.

3 Methods

First we establish notation and overview the general approach. Let X ∈ RN×D

contain expression measurements for D gene or protein expression features
across N cells. We call X the expression matrix. Let s ∈ RN×2 contain the
spatial locations of the N cells. We first apply a preliminary dimensionality
reduction, like Principal Component Analysis (PCA), to the expression matrix
X before the following neighborhood-based featurization. Call the reduced ma-
trix X̂ ∈ RN×P , where P is the number of dimensions after dimensionality
reduction.
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Figure 3: A UMAP embedding plot on the neighborhood matrix. Though
simple, the neighborhood quantile statistics make it possible to detect mixture
microenvironments. We could further find subclusters like the red-green mixture
in the central cluster.

Before we can embed properties of cell neighborhoods, we need to define and
derive features for each neighborhood. For each cell xi, we define its neighbor-
hood using distances induced by s, either containing all cells within a certain
radius or simply the K-nearest neighbors. Denote the neighborhood for cell i by
m (i) = (x1, . . . , xni), where x1, ...xni where ni is the number of neighbors sur-
rounding xi. We featurize the neighborhoods m (i) using neighborhood-based
featurizaton functions Tj ,j = 1, ..., J . We then rescale all the derived featur-

ization matrices T1(X̂), T2(X̂), ..., TJ(X̂) and concatenate them to obtain an
extended neighborhood-based featurization T (X). The neighborhood matrix
from Section 2 is a special case of T (X) using quantile features.

In more detail, let Tj : RP → Rpj , j = 1, 2, ..., J be a set of featurization
functions. By applying every Tj (m (i)) to each neighborhood m (i), we can

construct X̃j ∈ RN×pj . The matrix X̃j can be rescaled and then combined into

a widened neighborhood matrix X̃ ∈ RN×
∑J

j=1 pj . This neighborhood matrix X̃
is input to a dimensionality reduction method to recover a set of embeddings.
Our final set of microenvironments is found by clustering these embeddings.
Below, we apply K-means to the set of neighborhood-level embeddings.
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3.1 Example

We next discuss a specific instantiation of this general procedure, describing
the neighborhood and featurization choices used in Section 5 and implemented
in NBFvis. There, N gives the number of cells in one tissue section, D is the
number of proteins measured, and s are the centers of the segmented cells. We
apply PCA to the expression matrix X ∈ RN×D and then derive the reduced
expression matrix X̂ ∈ RN×P . Neighborhoods are constructed by keeping the
K nearest neighbors that are also within a given radius.

We use two types featurization functions Tj – quantile features and network

features. For the ith cell’s neighborhood, Z quantiles
(
qi,k1 , qi,k2 , . . . , qi,kZ

)
are

calculated for the kth protein, where k = 1, 2, . . . , P . For the neighborhood of

the ith cell, we derive a PZ-dimensional vector
(
qi,11 , qi,12 , . . . , qi,PZ , qi,PZ−1

)
. Thus,

Tquantile(X) : RN×P → RN×PZ . After featurization, we obtain an N × PZ
matrix, which we call the “quantile matrix.” Next, consider construction of
a network features. Let Gi denote the geometric graph associated with mi,
using the metric induced by s. Based on Gi, we can calculate a variety of node
or edge features. The associated network featurization here is Tnetwork (X) :
RN×P → RN×M , where M is the number of network statistics. For example, in
the experiments below, we use the number of edges degree (Gi) and a variety of
centrality measures. We use an ensemble of 29 network-based statistics in our
example, detailed in the appendix.

The final featurization combines both quantile and network features,

T
(
X̂
)

=
[
Tquantile

(
X̂
)
, Tnetwork

(
X̂
)]
.

T (X) is a N × (PZ + M) neighborhood matrix. Rescaling is applied to this
neighborhood matrix so that every column is on a similar scale. This rescaled
neighborhood matrix is passed to UMAP to obtain low-dimensional embeddings.
These embeddings can then be clustered to identify distinct microenvironments.

3.2 Implementation details

Several subtle but important details are worth noting. Before we calculate a
featurization matrix, a preliminary dimensionality reduction method is needed.
First, applying dimensionality reduction decreases the computational burden of
downstream analysis. Computing quantiles for each feature in a high-dimensional
dataset will further increase the dimensionality. For example, computing 10
quantiles for each of 100 variables results in 1000 columns. This significantly in-
creases the computational burden of embedding. Second, a statistical reason for
dimensionality reduction is to reduce the noise in the original high-dimensional
dataset. If the original data are effectively low rank, then dimensionality re-
duction method will reduce unnecessary noise while preserving most statistical
information, which is beneficial for the following embedding.

Another detail is the rescaling of the neighborhood matrix. Although the
neighborhood matrix could have hundreds or even thousands of columns, there is
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a. UMAP Embedding Plot b. Spatial Plot

Figure 4: The first component: the UMAP embedding and spatial plots. Part
(a) is the two-dimensional embedding of the neighborhood matrix, and (b) is
the original spatial layout of cell types.

no need to apply a preliminary dimensionality reduction to it, since all values are
approximately comparable. However, it is necessary to rescale the neighborhood
matrix because the ranges of different statistics vary dramatically, causing one
or two variables with large variance to dominate the whole UMAP embedding.
For instance, the entries in the quantile matrix are between -1.5 and 1.5 in the
TNBC dataset, but for the network matrix, it is common to have some network
statistics larger than 10. These network statistics would dominate the UMAP
embedding if no rescaling is applied.

4 Visualization Design

We devise an interactive Shiny app [Chang et al., 2015] to analyze outputs from
the neighborhood-based analysis, supporting visualization of microenvironment
differences. In this section, we discuss the design and visual queries supported
by the interface.

Figure 4 shows the first component of the Shiny app, the UMAP embedding
and linked spatial plot. This is used to relate the low-dimensional embeddings of
each cell’s neighborhood features to its overall spatial context. Figure 4a is the
two-dimensional UMAP embedding plot derived from the neighborhood matrix.
Each point corresponds to one cell. The closer these points are, the more similar
their neighborhood featurizations. To clearly visualize the distribution of cell
types, the points in Figure 4a are colored according to cell types.

Figure 4b is the spatial plot. Each point here represents a cell center, derived
from the original cell polygon in the tissue section. As before, different cell
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Select points in one plot

The corresponding points 
will shown in the other plot.

Figure 5: Area selection

types are distinguished by colors. Furthermore, the two panels in Figure 4
are dynamically linked. When points are selected in one plot through a mouse
brush, the corresponding points will also be highlighted in the other plot. Figure
5 shows the highlighted points in these two plots after one such selection. We
can click on the legend on the sidebar to deselect the these cell types so that
they do not appear. Figure 6 shows the embedding plot and scatterplot after
deselecting the immune cells.

The second component of the Shiny app shows the same embeddings, but
colored by K-means cluster rather than cell type. For example, in Figure 7, the
positions of points are still the same as in Figure 4, but they are clustered into
five K-means clusters. A slider is provided at the top of the second component
in Figure 7, which is used for changing the value of K in the K-means clustering.

The third component of this Shiny app supports the comparison of expression
levels across K-means clusters using a heatmap, structure plot, and histogram;
see Figure 8. There are three tab panels with which we can switch between these
three plots. Before making further comparison, we can filter to cells of interest
using the check boxes at the top of Figure 8. Two groups of check boxes are
offered to select the cell types and K-means clusters to focus on. Based on the
filtered cells, a expression heatmap of K-means clusters is provided in Figure
8. By default, it shows the top 10 most differentially expressed features across
the selected clusters, based on the median of expression value in each cluster.
A numeric input is offered above the heatmap – this controls the number of
features appearing in the heatmap. The structure plot of the selected K-means
clusters is provided in Figure 9, with which we can see the proportion of each cell
type across every cluster. The histogram of expression is available to compare
the selected feature’s expression across clusters. For example, Figure 10 is the
histogram of the HLA Class 1 content in Cluster 1 and 4. Note that a selection
input box is offered above the histogram to change the selected feature easily.
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Deselect immune cells by
 clicking on the legend. 

Figure 6: Cell types can be deselected by clicking on the legend.

Slider for the number of K-means clusters

a. UMAP Embedding Plot for K-means clustering b. Spatial Plot for K-means clustering

Figure 7: The second component: UMAP embedding plot and spatial plot of
K-means clustering.
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Check boxes group for selecting
K-means clusters and cell types

Figure 8: The third part: Heatmap, structure plot, and histogram. These views
help describe clusters identified by K-means.

Figure 9: Structure plot of K-means clusters. The dominant cell types in each
clusters are shown clearly.
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Figure 10: Histogram of expressions among K-means clusters. Users could
select different expressions by the selection input box above the histogram.

Figure 11: Expression plot of selected cells. Instead of coloring by cell type or
K-means cluster, each cell is shaded according to the selected genomic feature.
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To show the spatial distribution of a specific feature’s expression, another
combination of the embedding and spatial plot is provided in Figure 11. The
colors of the points in Figure 11 are reflect HLA Class 1 content. This expression
plot highlights spatial characteristics of the expression content. In this case,
expression is elevated in immune cells, especially those closest to the tumor-
immune boundary.

5 Data analysis

To illustrate our approach and package, we re-analyze the Triple Negative Breast
Cancer (TNBC) dataset of Keren et al. [2019]. To study this data, Chen et al.
[2020] proposed Spatial-LDA, which was found to reveal novel microenviron-
ments. Spatial-LDA models the distribution of cell types within neighborhoods
but does not model protein expression directly. In contrast, our proposal con-
siders quantitative protein measurements and network statistics within spatial
neighborhoods. Here, we choose the tissue section of Patient 4, which has 6643
cells consist of six cell types, immune cells (62.6%), keratin-positive tumor cells
(25.2%), tumor cells (6.4%), mesenchymal-like cells (3.2%), endothelial cells
(1.9%), and unidentified cells (0.5%). We use 41 expression variables, two-
dimensional coordinates of cell centers, and cell types for further analysis.

The first step is to construct the neighborhood quantile matrix. We apply
PCA to reduce the dimension of the expression matrix. We keep 19 principal
components, which is the smallest number of components required to explain
90% of the variance. These components are labelled as PC1, ..., PC19. Next,
neighborhoods are defined using a radius of 60 pixels. We only include the
cells among the top 40 nearest neighbors to the center cell of the neighborhood.
Quantiles for each principal component are calculated based on neighborhoods.
To avoid the influence of extreme values, only quantiles q0.10, q0.15, ..., q0.90 are
included. Hence, we derive a 6643 × 323 quantile matrix of neighborhoods
after featurization. The second step is to obtain the network matrix of the
neighborhoods. We again use a radius of 60 pixels to define neighborhoods
and keep only the 40 closest cells. Networks are constructed based on these
neighborhoods. We link cells whose centers are within 30 pixels of one another.
Then, 29 network statistics are calculated according the neighborhood networks;
most of these network statistics are different kinds of network centralities. This
results in a 6643× 29 neighborhood network matrix.

The third step is to combine the quantile and network matrices together
into an extended neighborhood matrix. The network matrix is rescaled in this
step. The result is a 6643 × 352 neighborhood matrix. The final step applies
dimensionality reduction and clustering to the neighborhood matrix. We ap-
ply UMAP to the neighborhood matrix to generate 2-dimensional embeddings
of each cell. K-means is applied to the UMAP embeddings to find potential
clusters. These can be interpreted as microenvironments.

We use a Shiny app implemented in NBFvis to explore the resulting of
UMAP embeddings and K-means clusters. Figure 12 shows the UMAP em-
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Figure 12: UMAP embedding and spatial plots using neighborhood-based fea-
turization. Panel (a) is the UMAP embedding plot colored in cell types. Panel
(b) is the spatial plot of the real positions of cell centers. We observe a transition
zone between clusters of tumor cells and immune cells in part (a).
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Figure 13: Transition zone in the UMAP embedding and spatial plots. The
corresponding cells whose embeddings are in the transition zone in panel (a)
are located close to the tumor-immune boundary in panel (b).
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Figure 14: K-means embedding and spatial plots with K = 5. Clusters in panel
(b) are spatially consistent. There are two special clusters on the tumor-immune
boundary, whose embeddings are in the transition zone in panel (a).

beddings and spatial plot of the neighborhood matrix. Figure 12a gives the
embeddings based on the reduction of the neighborhood matrix. The points
in the embedding plot are colored according to their cell types. There are two
main clusters in the embedding plot, composed primarily of immune and tumor
cells, respectively. These two clusters are connected by a transition zone of a
mixture of tumor and immune cells. Figure 12b is the spatial plot of the cells
in the tissue section. By selecting the transition zone in the embedding plot,
we find that the cells in this area are located on the boundary of immune cells,
tumor cells, and keratin-positive tumor cells. This is shown in Figure 13.

K-means clustering applied to the UMAP embeddings suggests potential
microenvironments. Figure 14 shows clustering results with K = 5. The clus-
ters are distinguished by their colors. In the embedding plot Figure 14a, the
embeddings are divided into 5 clusters, and in the spatial plot Figure 14b, the
corresponding locations of these clusters are shown. One finding is that the
clusters in the embedding space are spatially consistent.

In the Figure 14b, two microenvironments are founded among the tumor
cells and keratin-positive tumor cells, Cluster 3 in the inner part of the tumor
cell groups and Cluster 4 close to the boundary of immune cells. This mirrors
the findings of Chen et al. [2020]. Another finding is that there is a special
immune cell microenvironment, Cluster 2, lying on the boundary of immune
cells, tumor cells, and keratin-positive tumor cells. This microenvironment is
distinguished from the immune microenvironment in the inner part of immune
cell groups, which is Cluster 5 in Figure 14b. Notice that Clusters 4 and 5,
which are the microenvironments close to the tumor-immune boundary, are in
the transition zone in the UMAP embedding plot in Figure 13. Moreover, an-
other microenvironment, Cluster 3, is found in the top-left corner of Figure.14b,
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Figure 15: Heatmap of expressions in Cluster 2 and 5. Cluster 2 is on the tumor-
immune boundary and Cluster 5 is in the inner part of immune cell groups. The
most obvious difference in expressions between these two clusters are CD45 and
CD45RO. Cluster 5 has significantly lower CD45 and CD45RO content than
Cluster 2.

separate from the previous two immune microenvironments, Clusters 2 and 5.
Next, we explore the differences between these microenvironments by study-

ing their expression patterns. Figure 15 is the heatmap of the inner and bound-
ary immune microenvironments, which are Clusters 2 and 5 in the Figure 14b,
respectively. The heatmap shows the top 10 most differentially expressed pro-
teins between these two clusters, determined by the differences between medians
of expressions in each group. We choose the two most differentially expressed
proteins, CD45 and CD45RO, for further exploration. The histograms in Figure
16 show the contents of CD45 across these two microenvironments. The inner
immune microenvironment has a right-skewed distribution of CD45, indicating
that many cells in this microenvironment have low content of CD45. In con-
trast, the distribution of CD45 in the boundary immune microenvironment is
significantly higher than that in the inner immune microenvironment. Figure 17
is the expression plot of CD45, this confirms that cells along the tumor-immune
boundary have elevated CD45.

Checking the histogram and spatial expression of CD45RO in the inner and
boundary immune microenvironments, we arrive at similar conclusions. Figure
18 is the histogram of these two microenvironments. The histogram for the inner
immune microenvironments has a peak near the minimal value, which does not
appear on the histogram of the boundary immune microenvironments. It shows
that there are lower contents of CD45RO in the inner immune microenvironment
but higher contents of CD45R0. Figure19 also shows that there is a lighter
boundary on the tumor-immune cells, highlighting this microenvironment.

5.1 Cell-level approach

We also use the visualization tool to show the UMAP embedding and clustering
results when directly applied to the original cell-level protein expression matrix.
We use the same preprocessing as Keren et al. [2019]. This serves as a reference

17
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Figure 16: Histograms of CD45 across Clusters 2 and 5, highlighting elevated
CD45 levels in immune cells closer to the tumor-immune boundary. Histograms
for different features can be selected using the interface, and the choice can be
guided by a heatmap like in Figure 15.
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Figure 17: UMAP embedding and spatial plots shaded in according to measured
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consistent with Figures 15 and 16. This view also reveals elevated CD45 in the
top-right region, corresponding to Cluster 3.
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Figure 18: The analog of Figure 16 for CD45RO, another marker found to be
differentially expressed across Clusters 2 and 5. In contrast to CD45, the dis-
tribution in both clusters is strongly right-skewed, even after the preprocessing
applied by Keren et al. [2019].

−6 −4 −2 0 2 4 6

−10

−8

−6

−4

−2

0

2

4

6

0 500 1000 1500 2000

0

500

1000

1500

2000

0

1

2

3

4

5

CD45RO

a b

Figure 19: The analog of Figure 17 for CD45RO. This marker’s spatial expres-
sion structure is similar to that for CD45. The fact that more cells are shaded
darkly reflects the right skew observed in the histograms in Figure 18.
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Figure 20: The UMAP embedding and spatial plots obtained without neighbor-
hood features. Cells are shaded by cell type. Compare with Figure 12.

point against which to compare the proposed neighborhood-based featurization.
Figure 20 gives the UMAP embedding and spatial plot by the cell-level

approach. We find two clusters in the Figure 20a, one mainly made up of
immune and tumor cells, respectively. The result is similar to the simulation,
where UMAP embeddings are dominated by the differences between cell types
and microenvironments are hardly distinguished.

Figure 21 shows the clustering results after K-means clustering with K = 5.
The clustered microenvironments are mixed with each other; in particular, it is
difficult to distinguish a tumor-immune boundary microenvironment. Figure 22
compares the clustered spatial plots based on the cell-level and neighborhood-
based approaches. In Figure 22a, the cells in Region 1 are a mixture of three
microenvironments derived from the cell-level approach. It is difficult to identify
which microenvironment this region belongs to. Although Region 2 of Figure 22a
is mainly composed of Cluster 3, there are cells from Clusters 4 and 5 distributed
throughout. Though in principle it is possible to distinguish microenvironments
based on particular mixture patterns across cell types, doing so requires much
more effort than examining the neighborhood-based representation.

Compared with the cell-level approach, the neighborhood-based featuriza-
tion has a noticeably clearer clustering result. In Region 1 of Figure 22b, the
cells in the boundary of tumor cells are spatially consistent according to their
own cell types. Further, in Region 2 of Figure 22b, we observe a dominant
microenvironment without needing to parse mixed patterns of cell types.

Overall, the neighborhood-based featurization provides representations with
better spatial consistency, simplifying the discovery of microenvironments.
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Figure 21: A version of Figure 20 where cells are shaded by K-means clusters
found in the embedding on the left. Sub-cell type variation in the embedding
plot does not correspond to spatially meaningful microenvironments. Compare
with Figure 14.
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Figure 22: A direct comparison of the spatial plots from Figures 14 and 21.
Microenvironments with similar expression patterns (and stable cell type mix-
tures) are enclosed in black boxes. Microenvironments are more clearly visible
when using neighborhood-based featurization.
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6 Package

We next summarize how to use NBFvis to implement the proposed workflow.
We first load the packages and dataset we need. The dataset patient4 is a
6643× 59 data frame of all cells in the tissue section of Patient 4 in the TNBC
data [Keren et al., 2019]. We have added two columns named x center and
y center, which are the coordinates of the calculated cell centers from the
spatial raster data.

library(NBFvis)

library(dplyr)

data(patient4)

We select 41 variables from dsDNA to HLA Class 1, most of which are pro-
teins and cell type markers. The quantile matrix function generates the quan-
tile matrix from each cell’s neighborhood.

Quantiles_patient4 <- quantiles_matrix(

data = patient4 %>% select(dsDNA:HLA_Class_1),

coordinate = patient4 %>% select(x_center,y_center),

index = patient4$index,

NN = 40,

distance = 60,

min_percentile = 0.1,

max_percentile = 0.9,

quantile_number = 17,

method = pca_)

The function network matrix first builds the network inside the neighbor-
hood and then calculates the corresponding network statistics using the argu-
ment given by fun. In this example, we use the function centralities, also
exported by our package.

centrality_patient4 <- network_matrix(

coordinate = patient4 %>% select(ends_with("_center")),

index = patient4$index,

radius = 60,

NN = 40,

edge = 30,

fun = centralities,

length_output = 29,

name_output = NULL)

The scales of these two matrix are not the same, which means rescaling is
needed. Here we remove Column, index and n neighborhood in the quantile
matrix so that all the columns left are quantile and network variables. Normal-
ization and centering are applied to the centralities matrix so that they have
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a similar scale to the quantile matrix. We then combine the quantile matrix
and the rescaled network matrix to construct an extended featurization matrix,
which we called the neighborhood matrix earlier.

neighborhood_info_patient4 <- cbind(

Quantiles_patient4 %>% select(-index, -n_neighbor),

scale(centrality_patient4 %>% select(-index)))

The final step is to input the neighborhood matrix, the cell dataset patient4,
and the names of the variable of interest in the function NBFvis. This returns
an interactive Shiny app that was the source of figures in Section 5,

NBF_vis(

matrix = neighborhood_info_patient4,

origin_data = patient4,

var_names = colnames(patient4)[17:57])

7 Discussion

We have presented a method for visualizing spatial omics datasets that inte-
grates dimensionality reduction methods like UMAP with neighborhood-based
featurization based on quantiles and network properties. According to the re-
sults of our simulation, dimensionality reduction based on genomic features
alone has difficulty identifying microenvironments because the associated em-
beddings are dominated by differences in expression patterns across cell types.
Also, K-means clustering on the UMAP embeddings from this approach re-
sults in spatially inconsistent clusters, making it difficult to identify potential
microenvironments. In contrast, our approach, though simple to implement, is
able to avoid these problems by leveraging neighborhood information of cells.
After combining neighborhood-based statistics like quantiles and centralities,
we can detect microenvironments with mixed cell types, paralleling our simula-
tion results. Furthermore, spatially consistent K-means clusters can be derived,
supporting discovery of microenvironments.

We apply our methodology to the spatial omics dataset of [Keren et al., 2019]
and find five spatially continuous microenvironments in the cells’ spatial plot.
We compared this result with the analogous approach based on cell-level data
and found that it is more difficult to identify meaningful microenviornments
without an initial featurization step.

One advantage of our methodology is that the choice of neighborhood-based
featurization is flexible. In our example, we use neighborhood quantiles of prin-
cipal components and network statistics to build the neighborhood matrix for
UMAP. These statistics could be replaced by other neighborhood-based statis-
tics like cell-type diversity or local modularity. Also, the embedding and clus-
tering methods are not fixed. We could use alternative dimensionality reduction
methods like t-distributed stochastic neighbor embedding (t-SNE) and PCA or
clustering methods like spectral clustering depending on the problem structure.
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There are several avenues to develop this work. First, we treat the vertices
in the neighborhood networks identically, ignoring their cell types. This is con-
venient for the computation of network statistics, but information is nonetheless
lost. To address this, it may be possible to build neighborhood networks with
different vertex types and compute corresponding network statistics. A second
question is how to combine matrices. Our featurization is based on matrices
from two groups of statistics (quantiles and network statistics), and their vari-
ances and interpretation could be quite different according to their groups. Is
there a more principled approach to scaling and combining these measures into
a single featurization? One possible solution could be Multiple Factor Analy-
sis, which distinguishes between groups of statistics [Pagès, 2014]. Thirdly, we
use K-means clustering in our methodology, which is a common choice but far
from the best clustering algorithm for low-dimensional embeddings. K-means
clustering is sensitive to outliers in the embedding plot and assumes spherical
clusters, making it potentially unreliable. Spectral clustering could be a poten-
tial improvement, because it is more sensitive to the gradient structures in the
UMAP embeddings.
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Appendix

Network statistics implemented in NBFvis.

1. Degree

2. Number of Nodes

3. Betweenness Centrality

4. Closeness Centrality

5. Eigenvector Centrality Scores

6. Eccentricity Scores

7. Subgraph Centrality Scores
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8. Load Centrality Scores

9. Gil-Schmidt Power Index

10. Information Centrality Scores

11. Stress Centrality Scores

12. Average Distance

13. Barycenter Centrality Score

14. Latora Closeness Centrality

15. Residual Closeness Centrality

16. Communicability Betweenness Centrality

17. Cross-clique Connectivity Centrality

18. Decay Centrality

19. Diffusion Degree

20. Radiality Centrality

21. Geodesic k-path Centrality

22. Laplacian Centrality

23. Leverage Centrality

24. Lin Centrality

25. Lobby Centrality

26. Markov Centrality Score

27. Maximum Neighborhood Component

28. Semi Local Centrality

29. Topological Coefficient
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