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Hanying Jiang,1 Xinran Miao,1 Margaret W. Thairu,2 Mara Beebe,2 Dan W. Grupe,3 Richard J. Davidson,3,4,5 Jo Handelsman,2,6 Kris 
Sankaran1,2

AUTHOR AFFILIATIONS See affiliation list on p. 17.

ABSTRACT Mediation analysis has emerged as a versatile tool for answering mechanis
tic questions in microbiome research because it provides a statistical framework for 
attributing treatment effects to alternative causal pathways. Using a series of linked 
regressions, this analysis quantifies how complementary data relate to one another and 
respond to treatments. Despite these advances, existing software’s rigid assumptions 
often result in users viewing mediation analysis as a black box. We designed the 
multimedia R package to make advanced mediation analysis techniques accessible, 
ensuring that statistical components are interpretable and adaptable. The package 
provides a uniform interface to direct and indirect effect estimation, synthetic null 
hypothesis testing, bootstrap confidence interval construction, and sensitivity analysis, 
enabling experimentation with various mediator and outcome models while maintain
ing a simple overall workflow. The software includes modules for regularized linear, 
compositional, random forest, hierarchical, and hurdle modeling, making it well-suited 
to microbiome data. We illustrate the package through two case studies. The first 
re-analyzes a study of the microbiome and metabolome of Inflammatory Bowel Disease 
patients, uncovering potential mechanistic interactions between the microbiome and 
disease-associated metabolites, not found in the original study. The second analyzes new 
data about the influence of mindfulness practice on the microbiome. The mediation 
analysis highlights shifts in taxa previously associated with depression that cannot be 
explained indirectly by diet or sleep behaviors alone. A gallery of examples and further 
documentation can be found at https://go.wisc.edu/830110.

IMPORTANCE Microbiome studies routinely gather complementary data to capture 
different aspects of a microbiome’s response to a change, such as the introduction of a 
therapeutic. Mediation analysis clarifies the extent to which responses occur sequentially 
via mediators, thereby supporting causal, rather than purely descriptive, interpretation. 
Multimedia is a modular R package with close ties to the wider microbiome software 
ecosystem that makes statistically rigorous, flexible mediation analysis easily accessible, 
setting the stage for precise and causally informed microbiome engineering.

KEYWORDS human microbiome, computational biology, statistics, biostatistics

T reatments often cause change indirectly, triggering a chain of effects that eventu
ally influences outcomes of interest. A standard approach to disentangling these 

pathways is to distinguish between indirect paths through candidate mediators and 
direct paths from treatment to outcome. Figure 1A represents this graphically, with 
separate paths for treatment T → mediator M → outcome Y  and treatment T →
outcome Y . In the causal inference literature, this exercise is called mediation analysis, 
and various techniques have emerged to support it (1, 2). Several adaptations have 
been proposed for the microbiome setting, where mediators, outcomes, and controls 
may be high-dimensional (3–6). These efforts have already uncovered clinically relevant 
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relationships, like the existence of microbial taxa that mediate the success of chemother
apy treatments (7).

Despite these successes, existing methodology places strong requirements on the 
distribution of the mediators or outcome variables and the functional form of their 
relationships. For example (5, 6, 8, 9), assume that mediators are compositional and that 
outcomes are univariate, focusing on how microbiome relative abundance profiles 
mediate treatment effects on downstream host phenotypes, like the relationship 
between fat intake and body mass index (5). This precludes analysis where outcomes are 
multidimensional, like metabolic profiles, or where mediators are clinical measurements. 
Furthermore, with the exception of the mediation package (10), existing implementa
tions are not modular, fixing the estimator used in both the mediator and outcome 
regressions. This rigidity limits the range of settings in which mediation analysis can be 
applied. Moreover, it discourages critical evaluation or interactive model building since 
model components are difficult (or impossible) to interchange. Unfortunately, even the 
adaptable mediation package is limited to one-dimensional mediator and outcome 
variables.

To enable more flexible and transparent mediation analysis of microbiome data, we 
extend the methodology introduced by (10, 11) to high-dimensional mediator and 
outcome variables. This makes it possible to include sparse regression, logistic-normal 
multinomial, random forest, hierarchical Bayesian, and hurdle mediator and outcome 
models within a uniform package interface. Moreover, we have documented the process 
of inserting custom models into the overall workflow. These models can all be specified 
using R’s formula notation, and components can be easily interchanged according to 
context. We include operations for summarization, alteration, and uncertainty quantifica
tion for the resulting models, encouraging interactive and critical microbiome mediation 
analysis. We ensure strong ties to the wider microbiome software ecosystem by including 
methods to convert to and from phyloseq (12) and SummarizedExperiment (13, 14) data 
structures. Briefly, this research makes the following contributions:

• We define a flexible implementation of the generalized mediation analysis 
framework that applies to multivariate mediators and outcomes, and we develop 
modules for nonlinear (random forest), high-dimensional (regularized linear 
model), zeroinflated (hurdle model), and compositional (logistic-normal multino
mial) mediator and outcome models.

• We define a transparent interface linking widely used microbiome data structures 
to mediation analysis routines, including direct and indirect effect estimation, 
bootstrap inference, synthetic null hypothesis testing, sensitivity analysis, and 
summary visualization.

• We provide detailed case studies of how causal mediation analysis can guide 
principled data integration in multi-omics settings.

Altogether, the multimedia package unlocks the potential for mediation analysis for 
microbiome studies with complex experimental designs, enabling model-based 
integration of diverse data types, including microbial community composition, high-
throughput molecular profiles, and host health surveys.

RESULTS

Mediation analysis with our package is a three-step process. First, users specify the 
hypothesized causal relationships between variables with a concise syntax that repre
sents diverse modeling choices (Model Setup). Next, they estimate the model parame
ters and the associated causal effects (Counterfactual Analysis). Finally, they can 
compare synthetic data from alternative models and calibrate inferences using either 
bootstrap confidence intervals or hypothesis tests (Evaluating Uncertainty). This overall 
workflow is illustrated in Fig. 1B and detailed in the first three sections below. A summary 
of key package functions is given in Table 1. The last two sections demonstrate the 
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package workflow with case studies on metabolomic data integration and the gut-brain 
axis.

Model setup

To estimate a mediation model, it is necessary to fully specify the nodes and edges 
in Fig. 1A. The nodes are used to divide data sources into categories according to 
their role in the causal model. Edges correspond to mediator and outcome models. 
Rather than requiring the specification of all mediation analysis components at once 
in a single function, multimedia allows users to define separate components and then 
glue them together to define an overall analysis. The package exports a mediation_data 
data structure for storing the samples used in model fitting. We use R’s S4 system (15) 
to define separate slots for each node in Fig. 1A. This data structure can be created by 
applying the accompanying mediation_data function to accompanying R data.frame, 
phyloseq, and SummarizedExperiment objects. We support tidyverse-style syntax (16), 
meaning that many variables can be assigned to a node using concise queries. For 
example, mediation = starts_with(‘‘diet’’) will search the input data for any features 
starting with the string “diet” and will tag them as mediators in the downstream analysis. 
This efficient matching simplifies data manipulation in high-dimensional settings, where 
the user may need to work with hundreds of mediators or outcomes.

Next, we must specify the mediator and outcome models. The package exports 
wrappers to several regression families, ensuring that, despite their differing underlying 
methodology, all families can be used interchangeably for estimation, sampling, and 
prediction in the overall mediation analysis workflow. Specifically, multimedia includes 
(i) linear regression, which ensures that the package generalizes the earlier mediation 

package, (ii) ℓ1 and ℓ2-regularized linear regression (17, 18), which can be more stable 
and interpretable in the presence of numerous predictors, (iii) random forests (19), which 
supports detection of nonlinear relationships between variables, and (iv) hierarchical 
Bayesian regression (20), which can be useful for sharing information across related 
groups. Among the hierarchical Bayesian models, we highlight the available hurdle 

FIG 1 (A) The graphical model underlying mediation analysis. Using combined mediation (purple) and outcome (blue) models, mediation analysis makes it 

possible to distinguish between direct and indirect causal pathways between treatments and outcomes. The conventional mediation analysis typically requires 

all nodes except for the covariates X  to be univariate, whereas our package operates without such constraints. (B) The overall multimedia workflow. Multimedia 

defines a modular interface to mediation analysis with utilities for summarizing and evaluating uncertainty in estimated effects.
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regression models, which have previously proven useful for modeling zeroinflated 
microbiome data (21, 22).

Counterfactual analysis

After using the estimate function to fit models to the observed data, we can reason 
about potential outcomes under different treatment regimes. This allows us to clarify the 
relative importance of direct and indirect pathways. For example, to estimate a direct 
effect (T → Y ), we can block effects that travel along the indirect path (T → M → Y ) 
and measure the changes to the responses that persist. Formally, in the counterfactual 
language of the Materials and Methods, direct and indirect effects are estimated using 

predicted mediators M t  and outcomes Y t′,M t , where t and t′ correspond to 

mediator and outcomespecific treatment assignments. To this end, multimedia defines 
a data structure for storing t, t′  within two data.frames whose rows are samples 
and columns are treatment settings. The predict and sample methods allow users to 
compute expected values and draw samples according to arbitrary treatment profiles t, t′ . Note that, in addition to the standard treatment vs control setup, multimedia 
supports treatment profiles with multiple concurrent treatments and multilevel or 
continuous treatment.

Given a fitted model, multimedia outputs estimated direct and indirect effects. We 
formally define these effects in equations (7) to (9). Here, we offer an overview of their 
motivation and interpretation. Direct effects are the changes we would observe in the 
outcome if we changed the treatment node in Fig. 1A but held all the mediators fixed. 
This is the effect that travels along the edge T → Y , and it measures the extent to 
which the treatment can influence the outcome while bypassing the mediators. We 
evaluate different direct effects for each outcome. For example, in the mindfulness 
case study below, direct effects can be interpreted as microbiome shifts (changes in Y ) 
following the mindfulness training (treatment T) that are not a consequence of changes 
in participant sleep or diet behaviors (mediators M). Next, we support the estimation of 
two types of indirect effects. Total indirect effects measure the changes in the outcome 
when setting all mediators to their potential values when the treatment is present, 
keeping the contribution of the direct path T → Y  fixed. This aggregates the effect 
across the full collection of indirect paths. In contrast, pathwise indirect effects measure 
the changes in outcome when comparing counterfactuals that are equal except at a 

TABLE 1 Core functions for problem specification, effect estimation, and uncertainty quantification available through the multimedia packagea.

Stage Function Description

Model Setup mediation_data Convert phyloseq, SummarizedExperiment, or data.frame objects into S4 classes representing all 
components of a mediation analysis study

multimedia Define the form of the mediator and outcome models for estimation and effect calculations
Counterfactual Analysis direct_effect Estimate direct effects for each outcome (equation (8)) using the estimator in equation (16)

indirect_overall Estimate overall indirect effects for each outcome (equation (7)) using the estimator in equation (15)
indirect_pathwise Estimate indirect effects for each mediator-outcome pair (equation (9)) using the estimator in equation 

(17)
Statistical Inference bootstrap Re-estimate models and effects on bootstrap resampled versions of the experiment

nullify Define a version of an existing model with a subset of edges removed from either the mediation or 
outcome model

fdr_summary Calibrate a false discovery rate controlling selection rule using synthetic null data and equation (18)
Sensitivity Analysis sensitivity Evaluate the sensitivity of estimated overall indirect effects to violations of assumption following 

equation (20)
sensitivity_pathwise Evaluate the sensitivity of estimated pathwise indirect effects to violations of assumptions following 

equation (20)
sensitivity_perturb Evaluate the sensitivity of estimated overall indirect effects to violations of assumptions following 

equation (21)
aThe complete function reference can be read online at https://go.wisc.edu/830110. or as a PDF manual at https://go.wisc.edu/olm213.
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single mediator. This isolates the indirect effect along a single indirect path. In this case, 
an indirect effect is reported for each outcome-mediator pair, rather than only for each 
outcome. Note that the definitions of these effects involve unobservable quantities. Their 
identification relies on assumptions about the absence of confounding both before and 
after treatment assignment across configurations of mediators and outcomes, which are 
detailed in the Section “Counterfactual framework” in the Materials and Methods.

To increase modeling transparency, multimedia includes functions for interacting 
with and altering fitted models. Direct and indirect effects can be visualized within the 
context of the original data. This can serve as a sanity check and guide further model 
refinements. Outputs are created with ggplot2 (23), which allows users to customize plot 
appearance. The case studies include outputs from these helper visualization functions. 
Furthermore, given a fitted model, we allow users to refit new versions with sets of 
edges removed. Figure 2 illustrates the main idea with a toy data set. In the second 
column, the mediator takes on a larger value under the red treatment, while in the 
third, the mediators have identical distributions under the two treatments. Similarly, in 
the fourth, the relationship between the mediator and outcome no longer depends on 
treatment status. We can also alter the overall model structure, like the switch to a linear 
outcome model in the last column. If the model quality deteriorates significantly in an 
altered submodel, then those edges play a critical role. This heuristic is formalized in 
the synthetic null hypothesis testing strategy discussed below. Finally, we have built 
the package with extensibility in mind. If functions can be written for estimation and 
prediction from a new model type, then it can be passed in to multimedia as a custom 
mediation or outcome model.

Statistical inference

The multimedia package offers bootstrap (24–26) and synthetic null hypothesis testing 
(27–29) approaches for quantifying uncertainty in estimates of mediation effects. To 
bootstrap in the mediation analysis context, we refit the mediator and outcome models 
to bootstrap resampled versions of the data and compute summary statistics (e.g., direct 
effect estimates) on each bootstrap sample. The percentiles of the resulting summary 
statistic distribution define the bootstrap confidence interval. Importantly, the bootstrap 
is model agnostic and can apply to any instantiation of the counterfactual mediation 
analysis framework. The primary assumption made by the bootstrap is that its test 
statistics vary smoothly to small perturbations of the data. For this reason, it is worth
while to check that the histogram associated with the full bootstrap distribution is 
well-behaved before computing confidence intervals. Like the boot function in base R, 

FIG 2 Samples from altered versions of a mediation analysis model fitted to the toy data at the far left. Each row describes a different outcome variable, and 

colors represent different treatments. The first column gives the original data, and the remaining columns give simulated data from alternative models specified 

by the DAGs on the top and column titles.
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multimedia’s bootstrap uses a functional implementation—any function that transforms 
an experiment and fitted model into a summary statistic can be used as input. For 
example, it can accept a list of direct and indirect effect estimators, and these will be 
computed on bootstrap resample.

An alternative approach to inference in high dimensions is based on synthetic null 
hypothesis testing. In this approach, rather than resampling the original data, the 
modeler simulates synthetic data from an assumed null distribution. Effect estimates 
are computed using both the original and the synthetic null data, and the fraction of 
synthetic null “negative controls” among the strongest observed effects can be used to 
calibrate a selection rule with false discovery rate control. The alteration functions above 
can be used to define synthetic nulls; e.g., after zeroing out the edges from either T → M
or M → Y , any estimated indirect effects can be treated as negative controls. Two 
advantages of the synthetic null approach are that (i) it only requires the mediator and 
outcome models be estimated twice and (ii) multiple hypothesis testing is accounted 
for via the false discovery rate. The key disadvantage of this approach, relative to the 
bootstrap, is that it requires a realistic synthetic null data-generating mechanism. For 
example, if the synthetic null data are generated from a linear model, but real effects 
are nonlinear, then the resulting selection sets will not provide valid false discovery rate 
control.

Microbiome-Metabolome integration

We next illustrate the multimedia workflow with case studies. Our first concerns 
inflammatory bowel disease (IBD), which is closely tied to gut microbiome commun
ity composition. The studies (30, 31) investigated the relationship between the gut 
microbiome and metabolome between IBD patients and healthy controls, concluding 
that microbial community members may be partly responsible for the formation of 
metabolites that lead to inflammation and IBD. By applying clustering and canonical 
correlation analysis to untargeted mass spectrometry data, they flagged a number 
of disease-relevant metabolites. We re-analyze the data using model-based mediation 
analysis, viewing IBD status—healthy control, ulcerative colitis (UC), or Crohn’s disease 
(CD)—as treatments T, metabolic profile as the outcome Y , and microbiome community 
composition as a mediator M. The data are downloaded from the microbiome-metab
olome curated data repository (32). We have further filtered to the top 173 and 
155 most abundant microbes and metabolites, and we apply centered log-ratio (CLR) 
and log 1 + x  transformations to each source, respectively. Further details about the 
experimental cohort and data preparation are available in the Materials and Methods.

We use parallel linear and ℓ1-regularized regression for mediator and outcome 
models, respectively. Note that treatment is the only predictor in the mediator model, 
which is why no regularization is required. We ran the bootstrap for 1,000 iterations, 
and 95% confidence intervals and bootstrap distributions for the features with the 
strongest direct and overall indirect effects contrasting CD with healthy controls are 
shown in Fig. 3. Metabolites with strong indirect effects are influenced by IBD-induced 
changes in microbiome community composition, while those with large direct effects 
change due to other unknown factors. Figure 4 explores a small subset of these overall 
effects by overlaying metabolite abundances onto multidimensional scaling (MDS) plots 
derived from microbiome community profiles. Though metabolites with strong direct 
effects have differential abundance across IBD and healthy groups, only metabolites 
with indirect effects show variation that is also associated with microbiome composition. 
We caution that these results are potentially conservative. To ensure stability in high 

dimensions, the ℓ1 and ℓ2-regularized regression estimators implemented in multimedia 
are biased towards 0 (33). This may cause both direct and indirect effects to appear 
inappropriately weak, and extensions to debiased alternatives like (34) are an important 
line of future work.

Moreover, by analyzing pathwise indirect effects, we can uncover genus-level 
relationships. A subset of the strongest pathwise indirect effects are shown in Fig. 5. 
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Among the microbe-metabolite pairs with the strongest pathwise indirect effects, we 
find a relationship between the metabolite taurine and genus Bilophila (Fig. 5). High 
levels of fecal taurine, one of the primary conjugates of primary bile acids (35), have been 
previously associated with IBD (36, 37). It has also been found that Bilophila wadsworthia, 
one of the most prominent taurine metabolizers, is often associated with lower levels 
of taurine (37). Here, our results suggest that higher levels of taurine in IBD patients 
are mediated, in part, by the abundance of Bilophila. We also find microbes in the 
genus Firmicutes bacterium CAG:103 and are paired with several metabolites: cholate, 
chenodeoxycholate, and 7-ketodeoycholate (Fig. 5). Cholate and chenodeoxycholate are 
primary bile acids produced by the host, which are the metabolized by gut bacteria 
to form secondary bile acids. 7α-Dehydroxylation is one of the pathways that bacte
ria metabolize primary bile acids, an intermediate of which is 7-ketodeoycholate (38). 
Recent work has found that bacteria closely related to Firmicutes bacterium CAG:103 

FIG 3 95% Bootstrap confidence intervals for metabolites with the strongest estimated direct and overall indirect effects associated with CD. Effects are sorted 

according to magnitude, and only the top 15 of each type are shown. Within the interval, the inner rectangle captures 66% of the bootstrap samples. In this data, 

indirect effects are stronger than direct effects.

FIG 4 Microbiome composition and metabolite abundance for three metabolites with the strongest direct (top row) and indirect (bottom row) effects. 

Samples (points) are arranged according to an MDS on CLR-transformed microbiome profiles with Euclidean Distance. Axis titles give 
λk∑k′ λk′  from the associated 

eigenvalues. Each panel corresponds to a metabolite, and point size encodes metabolite abundance, normalized to panelspecific quantiles. Metabolites with 

strong indirect effects vary more systematically with microbiome composition—for example, samples with a low abundance of lithocholate are localized to the 

right of the MDS plot.
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contain the majority of predicted genes associated with the 7α-dehydroxylation pathway 
within metagenomic samples (39). Our results suggest that the increasing abundance 
of Firmicutes bacterium CAG:103 may be driving the decrease in these primary bile acid 
metabolites and intermediates, which is associated more with the non-IBD controls (40). 
Host deficiency in creatine uptake has been associated with poor mucosal health in 
IBD patients (41). In our results, we find that there is a strong microbe-metabolite pair 
between microbes in the genus Choladousia (family: Lachnospiraceae) and creatine/crea
tinine levels. Lachnospiraceae, which is often at lower levels in IBD patients, are known to 
produce short-chain fatty acids that have been shown to help with mucosal health (42) 
(Fig. 5). Overall, these results suggest that Choladousia may utilize creatine/creatinine as 
a nitrogen source, thus explaining its higher abundance in the controls.

Our discussion assumed no unmeasured confounding between mediators and 
outcomes. Sensitivity analysis can clarify whether these conclusions remain true even 
when assumptions are violated. Using the approach detailed in the Materials and 
Methods (equation (19)), we assessed pathwise indirect effects for three metabolite-
genus pairs. The results in Fig. 6 show the robustness of the taurine-Bilophila and 
sensitivity of the taurine-Choladousia indirect effect estimates. The ketodeoxycholate-
CAG103 effect is intermediate between these extremes, with indirect effects present 
up to confounding strength ρ = 0.5. More generally, multimedia offers functionality for 
evaluating sensitivity for a range of userspecified pretreatment confounding patterns. 
Our online vignette provides an additional example of sensitivity analysis for total, rather 
than pathwise, indirect effects.

Note that, since this mediation model is built from a regularized linear regression 
outcome model, it is more sensitive to linear associations between microbe and 
metabolite abundances. The official package documentation includes an alternative 
Bayesian hurdle outcome model, which exhibits higher sensitivity to outcomes with 
changes in metabolite presence-absence probability. The easy interchangeability of 
mediation analysis components makes this contrasting analysis simple to implement—it 
only requires change in a single line of code—and reflects multimedia’s modular design.

FIG 5 Microbe-metabolite pairs with the strongest pathwise indirect effects from IBD status. Each panel corresponds to one pair, CLR-transformed genus 

abundance is given on the x-axis, and log 1 + x -transformed metabolite abundance is given on the y-axis. Effects are sorted from most negative (top left) to 

most positive (bottom right). For a pathwise indirect effect to be strong, there must be both a shift in microbe abundance due to IBD state (T → M) and also an 

association between microbe and metabolite abundance (M → Y ).
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Evaluating a mindfulness intervention

Studies of the gut-brain axis have yielded experimental evidence for interactions 
between the gut microbiome and the brain. For example, germ-free mice colonized with 
the microbiota from human patients with clinical depression develop depression-like 
symptoms (43, 44), and observational studies have linked particular bacterial taxa to 
depression (45, 46). Given this growing body of evidence, a team from the UW-Madison 
Center for Healthy Minds and the Wisconsin Institute for Discovery profiled microbiome 
composition, surveyed psychological symptoms, and tracked behavior change among 54 
subjects before and after participation in a 2-month mindfulness training (47, 48)—see 
the Methods and Materials for details of the study design and data processing. This 
study aimed to determine the nature of the mindfulness-microbiome relationship and 
to identify potential causal pathways. Such understanding could lead to novel interven
tions that influence mood through the microbiome. As a first step, we use mediation 
analysis to understand the mechanisms linking mindfulness and the microbiome in this 
randomized controlled trial. Our intervention T is the mindfulness training program, 
the outcome of interest is microbiome composition Y , and mediators M are survey 
responses related to diet and sleep that are hypothesized to influence the microbiome. 
To control for subject-to-subject level variation, participant ID is used as a pretreatment 
variable X .

For mediator and outcome models, we apply ridge and logistic-normal multinomial 
regressions, respectively (49, 50). We choose a ridge regression model so that intercepts 
across the large number of participants are shrunk toward their global mean. We 
choose logistic-normal multinomial regression to jointly model microbiome composi
tion. We also define altered submodels where all direct and indirect effects have been 
removed. Simulated genera compositions from all models are shown in Fig. 7. In the 
newly simulated data, subjects have been randomly re-assigned to the treatment and 
control groups. These submodels can support synthetic null hypothesis testing since 
the synthetic null data appear to capture relevant properties of the real microbiome 
composition profiles, like the average relative abundances across genera and the range 
of observed abundances within most genera. Their main limitation is that some genera, 
like Methanobrevibacter, Paraprevotella, and Akkermansia, have much wider ranges than 
the synthetic data, and Fig. S1 suggests that this is due to a failure to capture the 
unusually high zero inflation present in these genera.

For synthetic null hypothesis testing, models without T → Y  and M → Y  associations 
are used to generate negative controls for direct and total indirect effect estimates, 
respectively. Figure 8 shows the estimated effects from real and synthetic data, together 
with the estimated false discovery rates. At a level q = 0.15, five genera are selected 
as having either significant direct or indirect effects. Figure S1 provides the analog of 
Fig. 5 for this case study. Indirect effects are an order of magnitude weaker than direct 

FIG 6 Sensitivity analysis for three metabolite-genus pairs in the IBD study. The strength of unmeasured confounding between mediators and outcomes is 

reflected in the x-axis parameter ρ. When the sign of the estimated indirect effect flips for small values of ρ , then the estimate is sensitive to violations in the 

identification assumptions.
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effects, suggesting that changes in microbiome composition following the mindfulness 
intervention cannot simply be attributed to changes in diet or sleep alone.

We cannot externally validate these findings since there is no consensus on the 
relationship between specific taxonomic groups and common psychiatric disorders [for a 
description of current sources of controversy, see reference (51)]. However, our findings 
are broadly consistent with those from a recent large-scale human cohort, which found 
that most genera belonging to the families Ruminococcaceae were depleted in people 
with more symptoms of depression and that Bifidobacterium was an important predictor 
of depressive symptoms in a random forest classifier (45).

DISCUSSION

Mediation analysis makes it possible to study causal pathways in multimodal micro
biome data, and it is an essential tool for discovery of subtle relationships that span 
multiple host measurements and high-throughput assays. Statistical techniques in this 
space are needed to support the interrogation of varied causal relationships, not simply 
studies where microbiome profiles serve as mediators and outcomes are one-dimen
sional, as has been the historical focus of the field.

Our case studies illustrate the flexibility and analytical depth supported by multi
media. Unlike traditional microbiome mediation analysis software, the package allows 
the specification of diverse regression components, and the interface simplifies the 

FIG 7 Real and synthetic null relative abundances across a subset of genera at different overall relative abundances. Color distinguishes whether the participant 

belonged to the treatment (mindfulness training) or control groups. The full model (left panel) captures the overall abundances and trajectories present in the 

real data though it tends to underestimate the heaviness of the tails. The second and third panels show the analogous models with direct (T → Y ) and indirect 

(M → Y ) effects removed.
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interpretation of effect types and model criticism. In this way, multimedia encourages 
interactive, rigorous mediation analysis for microbiome data. It is written to interface 
closely with the existing microbiome software ecosystem, and since analyses are carried 
out in reproducible code notebooks, it supports scientific transparency.

We note that multimedia is related to other recent approaches to transparent 
microbiome mediation analysis, most notably MiMed (52), which provides a self-con
tained graphical interface to support this task. The MiMed interface is available as a web 
server and a standalone Shiny App (53). MiMed and multimedia make recent statisti
cal advances in microbiome mediation analysis more accessible and offer advanced 
customizability. Furthermore, both software packages implement the generalized causal 
mediation analysis framework (11); the effect estimates and confidence intervals output 
by the packages share the same conceptual foundation. Nonetheless, there are critical 
distinctions. For example, MiMed is accessible to users with no programming experience, 
while multimedia requires familiarity with R software. Limiting multimedia to those with 
programming experience allows for a more modular design, with easily interchangeable 
and extensible code components. In particular, multimedia offers a more thorough 
instantiation of the generalized mediation analysis framework. MiMed’s implementation 
requires linear mediator and outcome models, and the outcome models must have 
univariate responses. In contrast, multimedia offers a broader range of model types 
(e.g., regularized linear or logistic-normal multinomial) that fit within the framework of 
reference (11), and both mediator and outcome models can be multivariate. As seen 
in both case studies, this additional flexibility enables the integration of more complex 
multivariate mediator and outcome data.

We have created a gallery of example notebooks that use the multimedia package. 
These include alternative analyses of the IBD and mindfulness data explored here. We 
invite users to contribute further examples, and we plan to structure further develop
ments according to community needs.

MATERIALS AND METHODS

Counterfactual framework

Let T ∈ T  be the treatment, M ∈M be the mediators of interest, Y ∈ Y be the 

outcome, and X ∈ X be the pretreatment covariates, where T ⊂ ℝ,M ⊂ ℝK,Y ⊂ ℝJ, 
and X ⊂ ℝP represent the supports of T,M,Y , and X . For simplicity, we assume 

FIG 8 Estimated direct and total indirect effects and false discovery rates derived from real and synthetic null data. Each point corresponds to one genus in 

either real (blue) or simulated (orange) data. The genera selected to control the false discovery rate at q ≤ 0.15 are drawn larger than the rest. Direct effects are 

both larger in magnitude and easier to distinguish than their indirect counterparts.
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T = {0, 1} and T is a binary indicator of either treatment (T = 1) or control (T = 0), 
though multimedia supports categorical, continuous, and multi-treatment cases.

We first consider the total indirect effect through all mediators and the direct effect 
through other mechanisms. Applying a counterfactual perspective, we define M(t) as 
the potential values of the mediators under T = t and Y (t,m) as the potential outcome 
under T = t and M = m. Therefore, we can use Y (t,M(t′)) to denote the potential 
outcome under the treatment status t when the mediators are set to be the potential 
values under t′. In reality, we can only ever observe the case where t and t′ are the 
same, i.e., Y (1,M(1)) in the treated group and Y (0,M(0)) in the control group—but 
conceptually t and t′ can be different. For example, Y (0,M(1)) represents the potential 
outcome when only the mediators are intervened upon and Y (1,M(0)) represents the 
potential outcome when we make interventions while keeping the mediators at their 
values under the control. For notational simplicity, we omit the dependence of M and Y
on X .

We adopt the definitions in reference (11), where the indirect effect is defined as

(1)δ(t) = E{Y (t,M(1)) − Y (t,M(0))}
and the direct effect is defined as

(2)ζ(t′) = E{Y (1,M(t′)) − Y (0,M(t′))}
for t, t′ ∈ {0, 1}. It has been shown in reference (54) that both effects are nonparamet

rically identifiable under the sequential ignorability assumption:

(3)Y t′,m ,M(t) ⊥⊥ T ∣ X = x, (4)Y t′,m ⊥⊥  M(t) ∣ T = t, X = x, (5)ℙ T = t ∣ X = x > 0, (6)pM(t)(m ∣ T = t, X = x) > 0,
for any t, t′,m,x.
Without additional assumptions, δ(t) and ζ(t) may vary with t. To provide a consistent 

and interpretable summary, we measure the total indirect effect and direct effect defined 
as follows;

(7)δ̄ = 1
2 ∑t = 0

1 E{Y (t,M(1)) − Y (t,M(0))}
(8)ζ̄ = 1

2 ∑t′ = 0

1 E Y 1,M t′ − Y 0,M t′
Large magnitudes of δ̄ and ζ̄ suggest strong indirect and direct effects.
Moreover, we can also examine the pathwise indirect effect through each mediator. 

We assume there is no causal relationship between the mediators M = M1,…,MK . 
When interest lies in the mediator Mk, we emphasize the dependence of the poten
tial outcome on both Mk and the remaining mediators M−k by writing Y (t,m,w), 
explicitly distinguishing Mk = m and M−k = w. To evaluate the pathwise indirect effect 
through Mk, we consider different treatment assignments for Mk and M−k. For example, Y (t,Mk(t′),M−k(t′′)) represents the potential outcome under the treatment status t
when Mk is set to be its potential value under t′ and M−k(t′′) are set to be their 
potential values under t′′. Using these notations, we can define the pathwise indirect 
effect through Mk as:

(9)ω̄k = 1
2 ∑t′ = 0

1 E{Y (t′,Mk(1),M−k(t′)) − Y (t′,Mk(0),M−k(t′))}
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This quantity has been proven to be nonparametrically identifiable under a general
ized version of the sequential ignorability assumption (55):

(10)Y (t,m,w),Mk t′ ,M−k t′′ ⊥⊥  T ∣ X = x (11)Y t′,m,M−k t′ ⊥⊥  Mk ∣ T = t, X = x, (12)Y t′,Mk t′ ,w ⊥⊥  M−k ∣ T = t, X = x, (13)ℙ T = t ∣ X = x > 0, (14)p Mkt,M−k(t) (m,w ∣ T = t, X = x) > 0,
for any possible t, t′, t′′,m,w,x.

Mediator and outcome model definition

Multimedia estimates the population quantities δ̄, ζ̄, and ω̄ by replacing the expectations 
in equations (7) to (9) with the average of fitted values under the estimated mediator and 
outcome models:

(15)δ̄ = 1
2 ∑t = 0

1 ∑i = 1

n Y i(t,Mi(1)) − Y i(t,Mi(0)),
(16)ζ̄ = 1

2 ∑t′ = 0

1 ∑i = 1

n Y i(1,Mi(t′)) − Y i(0,Mi(t′)),
(17)ω̄ = 1

2 ∑t′ = 0

1 ∑i = 1

n Y i t′,Mik(1),Mi, − k t′ − Y i t′,Mik(0),Mi, − k t′
A benefit of applying this generalized causal mediation analysis framework is that 

various prediction models can be used to obtain estimates M t,x  and Y t,m,x  of M t,x  and Y t,m,x , respectively. This flexibility is especially valuable in the micro
biome context, where both Y  and M may be multivariate and where observations 
may be zeroinflated, high-dimensional, compositional, or highly skewed. For example, 
the mediators and outcomes may represent survey responses, community taxonomic 
compositions, or metabolomic profiles. The approach of the multimedia package is to 
define an interface where prediction methods that have been designed to address these 
complexities can be easily swapped in and out. Therefore, advances in the prediction of 
microbiome data can be easily incorporated to improve causal effect estimation through 
higher-quality mediator and outcome models.

Specifically, the estimates in Formula (15)–(17) allow these prediction algorithms to 
be used as building blocks in support of estimating direct and indirect causal mediation 
effects. For example, on its own, random forests are only useful for prediction. But 

through M t,x  or Y t,m,x , they can provide plug-in estimates for causal analysis. We 
next provide details of the specific estimates used in our case studies though we again 
emphasize the broader generality of the underlying implementation. In the Section 
“Microbiome-Metabolome Integration,” we fit a separate sparse linear regression model 
to each metabolite with all CLR-transformed microbe abundances as inputs. Letting Y ij
represents the peak intensity for metabolite j in sample i and Mi the relative abundances 
of microbes in sample i, we estimate

βj := arg minβj ∈ ℝK ∑i = 1

n
log 1 + Y ij − CLR Mi Tβj 2 + λ‖βj‖1

In this case, the outcome model Y t,m,x  is a collection of metabolitespecific 

estimates β1,…, β J fit simultaneously. Note that the regularization parameter λ is 
fixed across all responses, rather than adaptive to metabolite j. The package supports 
linear, elastic net (56), random forest (19), hurdle (57), and hierarchical (including 

hurdle) models (20) for either mediator M t,x  or outcome Y t,m,x  models similarly. 
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Alternatively, instead of a collection of univariate models, a multivariate regression 
model can be fit to relate covariates with the high-dimensional response. This is the 
approach used in the Section “Evaluating a Mindfulness Intervention,” where a single 
logistic-normal multinomial model (50) is applied to model community composition as 
a function of treatment Ti, survey-derived mediators Mi, and pretreatment features Xi. 
In this case, the outcome model is a single, multivariate model estimated using the 

maximum a posteriori parameter B from a logistic-normal multinomial model with a 
normal prior:

B := arg maxB ∈ ℝ(J − 1) × (1 + K + P) ∏i = 1

N
Mult ∑j Y ij,φ−1 BZi p(B) .

Zi := Ti |Mi |Xi ⊤
p B :=∏kpN bkp |0,σ2

where φ−1:ℝJ − 1 → ℝJ is the mapping

φ−1(μ) = exp μ1
1 +∑j exp μj ,…, exp μJ − 1

1 +∑j exp μj , 1
1 +∑j exp μj

Note that all bootstrap, synthetic null testing, and sensitivity analysis functions are 
designed to operate on an abstract mediation_model S4 class. In this way, multimedia is 
easily extensible, and its causal mediation framework can be applied to various models, 
including those supplied by a user, as long as they satisfy the S4 class requirements.

Bootstrap and synthetic null testing

Form a bootstrap resample of the data D∗ = X∗,M∗,T∗,Y∗  by independently 
resampling the n observations with replacement. A summary statistic computed on 

the btℎ resampled data set is denoted by θ ∗ b D∗ . For brevity, we will omit the data 

arguments. For example, θ ∗ b
 could correspond to an estimator of δ̄ or ζ̄ derived from 

mediator and outcome models learned from D∗. Repeat this process B times and refit M t,x , Y t,m,x  and the provided summary statistic θ  for each of the bootstrapped 

data sets, yielding the bootstrap distribution θ ∗ b b = 1

B
. Let qα

2
 and q1 − α

2
 represent the α2

and 1 − α
2  quantiles of this set. Then, qα

2
, q1 − α

2
 forms an α-level bootstrap confidence 

interval for θ .
For synthetic null hypothesis testing, estimate mediator and outcome models Msub t,x ,Y sub t,m,x  using only a subset of edges within the DAG. This defines the null 

data generating mechanism. Using the same pretreatment and treatment profiles Xi,Ti
from the original experiment, simulate synthetic null data M ∗ 0,Y ∗ 0 from the submodel. 

For D taxa of interest, compute summary statistics θd1 d = 1

D
 and θd0 d = 1

D
 based on 

the original and the synthetic null data, respectively. For example, θd1 could estimate 

taxon d’s direct effect δ̄d using the original data, and θd0 could be the corresponding 
estimate derived from synthetic null data. Next, for any threshold t, we estimate the false 
discovery rate using
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(18)FDR t := # d: θd0 > t# d: θd0 > t + # d: θd1 > t .
The numerator counts the number of estimates from the synthetic null data that 

are larger than t, and the denominator counts the number of discoveries across either 
simulated or real data at that threshold. Given a desired FDR level q, the selection rule 

is defined by selecting t∗ = min t:FDR t ≤ q and selecting all features d such that θd1 > t∗ . Under the null samples generated by Msub t,x ,Y sub t,m,x , this rule controls 

the false discovery rate below level q, regardless of the choice of estimator θd, though 
better estimators lead to improved power.

Sensitivity analysis

Mediation analysis relies on untestable identification assumptions, detailed in the 
“Counterfactual framework” section. While these assumptions cannot be directly tested, 
the consequences of their violation can be explored through sensitivity analysis. We next 
review the sensitivity analysis methods available in the multimedia package, which are 
motivated by the more general methodology (54). Sensitivity is evaluated by simulating 
counterfactual mediator and outcome variables with correlated noise terms, represent
ing the situation where the assumption of no pretreatment confounding is violated. 
Specifically, we sample:

(19)Y∗(t,m) = Y (t,m) + ϵy and M∗(t) = M(t) + ϵm .
where Cov ϵm, ϵy ≠ 0. Given these data, we re-estimate either the total or pathwise 

indirect effects. This helps identify cases where the estimated indirect effects become 

zero or change signs when confounding is present compared to when Cov ϵm, ϵy = 0.
Specifically, the package offers tools for simulating and assessing effects under 

covariance structures for ϵm, ϵy  that represent pretreatment confounding. For example, 
users can generate data from equation (19) with:

(20)Σ(ρ,G) := diag σM2 ρσMσY⊤⊙ 1GρσYσM⊤ ⊙ 1G⊤ diag σY2
σM2 ∈ ℝ+K and σY2 ∈ ℝ+J  represent the estimated noise variances of mediators and 

outcomes, and 1G ∈ {0, 1}K × J is an indicator over mediator-outcome pairs G on which 
to evaluate sensitivity. When ρ ≠ 0, unmeasured confounding is present between these 
pairs. We recommend keeping G small because confounding patterns induced by large G are less plausible. For example, it is unlikely that a single mediator can be confounded 
with all outcomes, while all other mediators remain unconfounded. By adjusting ρ and G, 
package users can evaluate sensitivity to various patterns of pretreatment confounding.

The package also offers a more general form of sensitivity analysis, where users can 
supply an arbitrary matrix Δ and simulate noise from:

(21)Σ Δ, ν = diag σM2 ,σY2 + νΔ .
For example, this allows the evaluation of sensitivity with varying confounding 

strengths across mediator-outcome pairs. It can also be used to assess the effect of 
correlation across mediators. Note that when using either equations (20) and (21), we can 
simulate repeated data sets with the assumed covariance structure and refit models to 
estimate effects on each simulated data set. This allows us to report the standard error 
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of the estimated effects across choices of sensitivity analysis hyperparameters, helping to 
ensure that the sensitivity analysis itself is reliable.

Microbiome-metabolome data processing

We obtained the data from the microbiome-metagenome curated database. Details 
of the library preparation and bioinformatics can be found in reference (58). Briefly, 
metagenomic sequencing was done on an Illumina HiSeq 2500, and metabolites were 
profiled using LC-MS in non-targeted mode. For metagenomics, fastp was applied to raw 
reads for quality filtering, adapter trimming, and deduplication. bowtie2 was used to 
remove human reads by aligning to the hg38. kraken2.1.1 and bracken 2.8 were used to 
estimate taxonomic relative abundances.

A total of 11,720 taxa and 8,848 metabolites are present in the public data. We 
applied a centered log-ratio transformation to the microbiome relative abundances 

profiles: CLR x1,…,xD := logxd − 1D∑d′ logxd′ d = 1

D
. We then filtered to taxa whose 

average transformed abundance was larger than 3, which reduced the number of taxa to 
173. We kept only metabolites with confident HMDB assignments, applied a log 1 + x
transformation, and further filtered to those whose average transformed intensity was 
larger than 6. This resulted in 155 well-annotated and generally abundant metabolites.

Mindfulness study design and processing

The initial Center for Healthy Minds study recruited 114 police officers participants 
across two cohorts. Microbiome samples were obtained only from participants in the 
second cohort (n = 54), who were randomly assigned to mindfulness training or waitlist 
control with 27 cases each. We removed four participants due to incomplete responses—
three lacked microbiome data, and one had missing mediators. Our analysis considers 
a mindfulness training treatment group of size n = 24 and a waitlist control group of 
size n = 26. Participants in the mindfulness group took part in an 8 week, 18 h mindful
ness training developed specifically for their career and inspired by Mindfulness-Based 
Stress Reduction and Mindfulness-Based Resilience Training (47). Weekly 2-h classes (and 
a 4-h class in week 7) consisted of didactic instruction, embodied mindfulness practi
ces, and individual and group-based inquiry [for full intervention details, see reference 
(48)]. Microbiota and behavioral survey data were gathered at 2–3 timepoints for each 
participant—samples in the treatment group provided data before, within 2 weeks 
following, and, in a subset of cases, 4 months after the 8 week intervention, resulting in 
118 samples total.

Gut microbiome composition was assessed using 16S rRNA gene sequencing, and 
participants completed surveys, as reported previously (48). One to four technical 
replicates (on average, 2.6) were sequenced for each 16S rRNA gene sample, resulting in 
307 microbiome composition profiles in total. Amplicon Sequence Variants (ASV) were 
called using the DADA2 pipeline (59). The first 10 base pairs were removed, and all reads 
were truncated to a length of 250. Otherwise, we set all pipeline hyperparameters to 
their defaults. Since the total number of participants is relatively small, we chose to 
concentrate on the core microbiome (60). To this end, we assigned taxonomic identity 
to each ASV using the RDP database and aggregated all counts to the genus level 
(61). We removed any genera that did not appear in at least 40% of the samples, 
thereby generating a core microbiome. On average, this preserved 98.7% of the reads 
within each sample. After filtering to the core microbiome, sequences for 55 genera 
remained. To define mediators, we manually selected four variables from the National 
Cancer Institute Quick Food Scan and self-reported questionnaires on fatigue and sleep 
disturbance scores based on the Patient-Reported Outcomes Measurement Information 
System subscale (62). We concentrated on these questions because changes in both 
diet and sleep have previously been associated with mindfulness interventions and the 
microbiome (63–65).
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In detail, we consider four mediators—two diet mediators from the National Cancer 
Institute Quick Food Scan and two stress variables from the Patient-Reported Outcomes 
Measurement Information System (43-item inventory; version 2.0) following (62). They 
are all calculated from questionnaires. The two diet variables indicate the frequency that 
participants eat cold cereal and fruit (not juices), respectively, in the past 12 months 
(Table S1). The two stress variables, fatigue and sleep disturbance, profile the stress of a 
participant in the past 7 days (Table S2).
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