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Summary
The R-Shiny package MolPad provides an interactive dashboard for understanding the dynamics of longitudinal
molecular co-expression in microbiomics. The main idea for addressing the issue is first to use a network to
overview major patterns among their predictive relationships and then zoom into specific clusters of interest.
It is designed with a focus-plus-context analysis strategy and automatically generates links to online curated
annotations. The dashboard consists of a cluster-level network, a bar plot of taxonomic composition, a line
plot of data modalities, and a table for each pathway. Further, the package includes functions that handle the
data processing for creating the dashboard. This makes it beginner-friendly for users with less R programming
experience. We illustrate these methods with a case study on a longitudinal metagenomics analysis of the
cheese microbiome.

Statement of need
The realm of microbiomics is expanding rapidly, with numerous new studies and methodologies emerging
(Bokulich et al. 2020). This highlights the need for visual exploration tools that can account for interaction
across biological modalities (Fernstad et al. 2011). It’s important to enable interpretations of dynamics and
network structure because these have specific meanings in the genomic context (Corel et al. 2016). Another
issue is the annotation of notable features. A characteristic of microbiome data is that each identical feature
can be classified at several levels of taxonomic resolution and could have several IDs in different databases
(Kanehisa and Sato 2020). Although relevant annotation is typically available online, it can be tedious to
search through databases manually. Moreover, microbiome data often exhibit longitudinal variation. In
this context, we must gain insight into the functioning of how individual features change and how they may
influence related features. These issues have posed a challenge for unified visualization and interpretation.

In response to the above issues, previous studies on interactive visualization tools have designed methods
to work on such data. microViz (Barnett, Arts, and Penders 2021) provides a Shiny app for interactive
exploration by pairing ordination plots and composition circular bar charts to show each taxon’s prevalence
and abundance. GWENA (Lemoine et al. 2021) applies a network in conducting gene co-expression analysis and
extended module characterization in a single package to understand the underlying processes contributing to a
disease or a phenotype. NeVOmics (Zúñiga-León, Carrasco-Navarro, and Fierro 2018) improved compatibility
with a dynamic dashboard and facilitated the functional characterization of data from -omics technologies. It
also integrates over-representation analysis and network-based visualization to display enrichment results.
We build on this foundation to better enable longitudinal and cluster-oriented visualization.
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Methods
Network Generation
We first scale and cluster the trajectories across all molecular features to depict longitudinal change. For
clustering, we use K-means and a built-in elbow method to choose the optimal number. Then, we predict a
co-expression network for the extracted patterns, similar to how GENIE3 (Huynh-Thu 2010) creates gene
regulatory networks. We also divide the prediction process into individual regression tasks. Each cluster
centroid is predicted from the expression patterns of all the other cluster centroids, using random forests.
We choose random forests because of their potential to model interacting features and non-linearity without
strong assumptions. The Mean Decrease Accuracy of a subset of top predictors whose expression directly
influences the expression of the target cluster is taken as an indication of a putative link. That is to say,
based on the random forest prediction, if two groups of features are highly linked according to the network,
they will have strongly related longitudinal patterns, as shown in Fig 3.

Network Navigation
Navigating the network in the MolPad dashboard follows three steps, as shown in Fig 1: First, choose a
primary functional annotation. Adjustment options for fine-tuning include network layout and importance
threshold for edge density. Bright green nodes (Fig 2.A) represent clusters containing the most features in the
chosen functional annotation. Second, brushing on the network reveals patterns of taxonomic composition
(Fig 2.B) and typical trajectories (Fig 2.C). The user can also zoom into specific taxonomic annotations
by filtering. Third, they may view the feature table (Fig 2.D), examine the drop-down options for other
related function annotations, and click the link for online details for the items of interest. The interface is
designed to support iterative exploration, encouraging the use of several steps to answer specific questions,
like comparing the distributional patterns between two functions or finding functionally important community
members metabolizing a feature of interest. By applying a focus-plus-context approach ((Shneiderman 1996)
and (Sankaran and Holmes 2018)), we can bridge the examination of high-level details related to individual
features with contextual information about cluster interactions within the network visualization.

Figure 1: Overview and workflow of using MolPad package.

Case Study: Cheese Data
Here we aim to highlight the versatility of the MolPad Dashboard with a case study of microbial communities
on the wash-rind cheese’ surface collected during cheese ripening. In the original research, (Saak et al.
2023) investigated the successional dynamics that occur within cheese rind microbial communities using a
combination of 16S rRNA amplicon, Illumina, and PacBio sequencing. We functionally and taxonomically
annotate (using eggNOG (Huerta-Cepas et al. 2018) and MMseqs2 (Steinegger and Söding 2017)) the contigs
they have generated from the Illumina reads, to demonstrate the utility of MolPad. Specifically, we focus on
Cheese Sample A and Cheese Sample C. Overall, we are not only able to uncover similar findings as (Saak et
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al. 2023), with this subset, but we are also able to make new hypotheses.

For example, when we filter for Actinomycetota (Actinobacteria) as the functional group, we see that there
are no edges connecting to group 10 and group 3- the clusters that have the most features associated with
Actinomycetoa for Cheese sample A (4.A). Looking at the pattern traces of these groups, (4.B), there is a
peak in samples A4 (week 9) and A5 (week 13), which mirrors the 16S rRNA results of Saak et al. Since
these two clusters do not have edges connecting them to other groups, this suggests that the Actinomycetoa
features found in these groups follow distinct longitudinal succession patterns that are independent. When
looking at Actinomycetoa within Cheese Sample C we see a different pattern. Groups 2 and 5, have the most
features associated with Actinomycetoa, but they are highly connected to the other groups (4.A). From these
results, we can hypothesize that though Actinomycetoa features are more abundant in later time points for
both cheese samples, their dynamics are differentially influenced. The authors found that Type VI secretion
was enriched in Pseudomonadota bacteria (specifically, Psychrobacter), and hypothesized this enrichment
was due to the importance of physical species interactions that occur with this habitat. Using MolPad, we
searched for other secretion systems associated genes, to understand their dynamics within the community.
Focusing on KEGG annotated Type IV secretion genes, we found that Group 9 contained 12/13 of these
genes. Within this group, features that cluster are ones that peak in Cheese sample C5 (week 13, 4.D). This
is also the most taxonomically diverse sample. From this, we can hypothesize that increased taxonomic
diversity is also associated with increases in genes that are related to competitive species interactions.

Usage
The source code for MolPad is available on Github. The app is hosted in the R package which can be
downloaded and run locally. We anticipate that some users may need more flexibility in their analyses,
requiring backend R development for tasks like setting up detailed operating models or downloading figure
outputs. For such needs, the essential set of R functions employed in the Shiny app is accessible through the
R package.

Figures

Acknowledgments
Research reported in this publication was supported by the National Institute of General Medical Sciences of
the National Institutes of Health under award number R01GM152744.

References
Barnett, David J. M., Ilja C. W. Arts, and John Penders. 2021. “microViz: An r Package for Microbiome

Data Visualization and Statistics.” Journal of Open Source Software 6 (63): 3201. https://doi.org/10.211
05/joss.03201.

Bokulich, Nicholas A., Michal Ziemski, Michael S. Robeson, and Benjamin D. Kaehler. 2020. “Measuring the
Microbiome: Best Practices for Developing and Benchmarking Microbiomics Methods.” Computational and
Structural Biotechnology Journal 18: 4048–62. https://doi.org/https://doi.org/10.1016/j.csbj.2020.11.049.

Corel, Eduardo, Philippe Lopez, Raphaël Méheust, and Eric Bapteste. 2016. “Network-Thinking: Graphs to
Analyze Microbial Complexity and Evolution.” Trends in Microbiology 24 (3): 224–37. https://doi.org/10
.1016/j.tim.2015.12.003.

Fernstad, Sara Johansson, Jimmy Johansson, Suzi Adams, Jane Shaw, and David Taylor. 2011. “Visual
Exploration of Microbial Populations.” In 2011 IEEE Symposium on Biological Data Visualization (BioVis).,
127–34. https://doi.org/10.1109/BioVis.2011.6094057.

Huerta-Cepas, Jaime, Damian Szklarczyk, Davide Heller, Ana Hernández-Plaza, Sofia Forslund, Helen Cook,
Daniel Mende, et al. 2018. “eggNOG 5.0: A Hierarchical, Functionally and Phylogenetically Annotated
Orthology Resource Based on 5090 Organisms and 2502 Viruses.” Nucleic Acids Research 47 (November).
https://doi.org/10.1093/nar/gky1085.

3

https://github.com/KaiyanM/MolPad
https://doi.org/10.21105/joss.03201
https://doi.org/10.21105/joss.03201
https://doi.org/10.1016/j.csbj.2020.11.049
https://doi.org/10.1016/j.tim.2015.12.003
https://doi.org/10.1016/j.tim.2015.12.003
https://doi.org/10.1109/BioVis.2011.6094057
https://doi.org/10.1093/nar/gky1085


Figure 2: Dashboard Overview: A: cluster-level network, B: taxonomic-level bar plot, C: a type-level line plot,
and D: a feature-level table.

Figure 3: Example of discovering related patterns with the network plot. The shade of edges stands for the
vicinity of nodes. In the brushed area, Groups 1-7-8 (circled by solid black lines) and 1-2 (circled by blue
dashed lines) are strongly linked. For Groups 1, 7, and 8, the patterns are w-shape with an evident peak at
the same time section. For Groups 1 and 2, although Group 1 has higher volatility, they both show a highly
overlapped increasing trend.
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Figure 4: Dashboard showing Actinomycetota filtered network (A) with enrichment pattern for Cheese
Sample-A (B) and Cheese Sample-C (C); Cluster pattern for Group 9, which also is enriched for Type IV
secretion genes (D).
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