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Abstract

Time series studies of microbiome interventions provide valuable data about microbial eco-

system structure. Unfortunately, existing models of microbial community dynamics have lim-

ited temporal memory and expressivity, relying on Markov or linearity assumptions. To

address this, we introduce a new class of models based on transfer functions. These models

learn impulse responses, capturing the potentially delayed effects of environmental changes

on the microbial community. This allows us to simulate trajectories under hypothetical inter-

ventions and select significantly perturbed taxa with False Discovery Rate guarantees.

Through simulations, we show that our approach effectively reduces forecasting errors com-

pared to strong baselines and accurately pinpoints taxa of interest. Our case studies high-

light the interpretability of the resulting differential response trajectories. An R package,

mbtransfer, and notebooks to replicate the simulation and case studies are provided.

Author summary

Effectively controlling dynamic microbiomes has remained a major research challenge,

primarily due to the interdependence between microbes and their sensitivity to environ-

mental change. Tackling this challenge would advance microbiome engineering, with sig-

nificant implications for healthcare, agriculture, and conservation. We introduce a flexible

and statistically-principled approach to modeling microbe-microbe and microbe-envi-

ronment relationships. We illustrate the methodology on case studies using microbiome

time series datasets related to precision nutrition and women’s health. We have released a

software package, mbtransfer, to allow easy implementation of the methodology in other

contexts where it is important to quantify intervention effects in temporally sampled data.

Introduction

Microbiomes respond dynamically to environmental shifts. For example, changes in diet can

rapidly alter diversity in the gut microbiome [1], childbirth can remodel the community state

type of the vaginal microbiome [2], and the introduction of a pathogen can cause sub-commu-

nities to collapse [3]. Understanding these dynamics, together with how they fit into a

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012196 June 14, 2024 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Sankaran K, Jeganathan P (2024)

mbtransfer: Microbiome intervention analysis

using transfer functions and mirror statistics. PLoS

Comput Biol 20(6): e1012196. https://doi.org/

10.1371/journal.pcbi.1012196

Editor: Niranjan Nagarajan, Genome Institute of

Singapore, SINGAPORE

Received: January 17, 2024

Accepted: May 27, 2024

Published: June 14, 2024

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pcbi.1012196

Copyright: © 2024 Sankaran, Jeganathan. This is

an open access article distributed under the terms

of the Creative Commons Attribution License,

which permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Software

implementing the methodology is available on

GitHub at https://go.wisc.edu/crj6k6. Code and

data to reproduce simulation experiments are

available on GitHub at https://go.wisc.edu/dxuibh.

https://orcid.org/0000-0002-9415-1971
https://orcid.org/0000-0002-6467-0180
https://doi.org/10.1371/journal.pcbi.1012196
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1012196&domain=pdf&date_stamp=2024-06-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1012196&domain=pdf&date_stamp=2024-06-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1012196&domain=pdf&date_stamp=2024-06-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1012196&domain=pdf&date_stamp=2024-06-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1012196&domain=pdf&date_stamp=2024-06-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1012196&domain=pdf&date_stamp=2024-06-27
https://doi.org/10.1371/journal.pcbi.1012196
https://doi.org/10.1371/journal.pcbi.1012196
https://doi.org/10.1371/journal.pcbi.1012196
http://creativecommons.org/licenses/by/4.0/
https://go.wisc.edu/crj6k6
https://go.wisc.edu/dxuibh


microbiome’s stable state, could guide the design of precise interventions to achieve desirable

health or ecological outcomes [4, 5]. To this end, several models of microbial community

dynamics have been developed to quantify environmental effects. A key model in this domain

is the generalized Lotka-Volterra (gLV) model, which discretizes an ordinary differential

equation for competitive predator-prey dynamics [5, 6]. Various extensions have been pro-

posed to better account for microbiome-specific properties, like high-dimensionality and spar-

sity [7–10].

Specifically, denote the microbial community profile and environmental state at time t by

y (t) and w (t), respectively. The gLV supposes
@yðtÞ
@t ¼ Ay tð Þ þ Dw tð Þ þ � tð Þ, and it can be fit-

ted by log-transforming the observed taxonomic abundances log (1 + yt) and fitting an elas-

tic net regression of log (1 + yt+1) − log (1 + yt) against wt. The main limitations of this

model are (1) that it assumes linearity in the relationship of log (1 + yt+1) − log(1 + yt) onto

wt and (2) it relies on a Markov assumption, referring only to the immediate past. Moreover,

it does not support formal statistical inference. In contrast, MALLARD [9] and fido [10] are

based on a multinomial logistic-normal autoregressive and multinomial logistic-normal

Gaussian Process models. In fido, the Gaussian Process structure encourages sharing across

timepoints, and the model supports probabilistic inference. MDSINE and MDSINE2 [7, 8]

are negative binomial dynamical systems models that extend the gLV and focus on the dis-

covery of interspecies interactions and perturbation effects. Autoregressive dynamics are

clustered using a Dirichlet Process, and a Gaussian Process prior regularizes species abun-

dance trajectories.

We propose a microbiome transfer function (mbtransfer) modeling workflow to provide a

simple but expressive language for intervention analysis in dynamic microbiome communi-

ties. The key ingredients of our approach are transfer function models [11], which summarize

community dynamics, and mirror statistics [12], which enable precise inference. Transfer

functions relate an “input” series to an “output” one. These models were originally developed

to support intervention analysis in time series data, for example, the impact of new emissions

regulation on local ozone levels [11], and we adapt this framework to the high-dimensional

microbiome setting. Mirror statistics are an approach to selective inference [13] that leverages

data splitting to rank differential effects while controlling the False Discovery Rate (FDR), and

we develop an instance of this algorithm using partial dependence profiles of the fitted transfer

function models. This approach is analogous to recent proposals based on knockoffs [14, 15],

but it does not depend on the simulation of knockoff features, which can be sensitive to mis-

specification. Taken together, transfer function models and mirror-based inference address

central questions in microbiome intervention analysis:

1. Which taxa are the most affected by the intervention? Mirror statistics identify taxa with

differential trajectories across counterfactual environmental conditions.

2. When are these taxa affected? We can distinguish between transient and sustained shifts in

the community by simulating counterfactual trajectories from fitted transfer function

models.

3. Which factors mediate the shift? Flexible transfer function models can detect interactions

between interventions and environmental features.

We release an accompanying R package to support the estimation of transfer function mod-

els, testing for significant taxon-level effects, and simulation of counterfactual alternatives. The

package’s source code and documentation, including notebooks to reproduce the case studies,

can be found at https://go.wisc.edu/crj6k6.
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Materials and methods

Transfer function models

Transfer function models were introduced as a linear autoregressive model applied to two con-

current time series, a series wt 2 R that serves as the intervention and a series yt 2 R that

changes in response [11]. We consider the generalization,

yðiÞt ¼ fðYðiÞt� 1;WðiÞ
t ; z

ðiÞÞ þ �ðiÞt ð1Þ

where we have used the following notation (see also Fig 1A):

• yðiÞt 2 RJ
: The microbiome community profile for subject i at time t. Includes measurements

across all J taxa. Alternative normalizations can be applied before defining yðiÞt (size factor,

total sum scaling, centered log-ratio), and their influence is considered in the simulation

study below.

• YðiÞt� 1 2 RJ�P: The combined measurements from time t−P to t − 1 for subject i, which can be

interpreted as a length-P memory of past community profiles. Note that

YðiÞt� 1 ¼ ½y
ðiÞ
t� Pj � � � jy

ðiÞ
t� 1�.

• WðiÞ
t 2 R

D�Q: The strength of D interventions from time t − Q + 1 to t for subject i. Inter-

preted as the length-Q memory of environmental interventions, including the current

timepoint.

• zðiÞ 2 RS
: The characteristics of subject i that do not vary over time.

• �
ðiÞ
t 2 RJ

: Random error in the taxonomic measurements for timepoint t in subject i. For

valid inference (Eq 3), this must be assumed symmetric about zero.

Fig 1. Overview of the transfer function approach to modeling microbiome interventions. (A) A transfer function model (Eq 1) is trained to forecast

future community profiles. This model leverages past community data, past and current intervention information, and static subject-level

characteristics. (B) Forecasts on held-out subjects are used to evaluate model performance, potentially guiding model improvements. (C) The trained

models are used to simulate counterfactual trajectories, supporting the study of hypothetical interventions. Multiple interventions can be applied

concurrently, and they may be real-valued. (D) To identify taxa sensitive to the interventions, partial dependence effects from simulated trajectories are

used to calculate mirror statistics.

https://doi.org/10.1371/journal.pcbi.1012196.g001
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The model in Eq 1 can summarize and simulate intervention effects on microbial commu-

nities, accounting for baseline profiles and mediating host features.

What relationships are expressible within this model class? To answer this question, we sep-

arately consider the inputs and the model structure. We train each coordinate fj of f to predict

ytj (taxon j’s abundance at time t) using flattened prior abundances Yt−1, perturbations Wt,

and static features z. We supplement this input with interaction terms identified by the xyz

algorithm [16] as potentially predictive of future abundance. These interaction terms allow

inputs to modulate one another, analogous to interactions in ordinary linear models. We esti-

mate each fj using linear boosting applied to these inputs. Note that the learned f̂ j depends on

the number of boosting iterations and the learning rate, and we have omitted this dependence

for ease of notation. Linear boosting can be understood as a regularized linear model learned

through an additive basis expansion [17, 18]. While components are linear, the xyz-derived

interactions between Yt−1, Wt, and z induce nonlinearity with respect to the original inputs,

reflecting the degree of the interaction. The fitted f̂ j can be analyzed to understand the influ-

ence of perturbations and other taxa on the abundance of taxon j. For example, in the preda-

tor-prey dynamics example below and in our definition of mirror statistics, we apply partial

dependence profiles.

For estimation, we tile sample trajectories into disjoint time windows. For each window, we

extract aligned taxonomic YðiÞt� 1 and intervention WðiÞ
t samples. These are then vectorized and

combined with z(i) to form a RPJþQDþS-dimensional feature vector. Once trained, the estimates

f̂ can be used to simulate expected counterfactual trajectories under hypothetical interventions

~Wtþ1 given initial compositions ~Yt and subject characteristics ~z. The one-step forecast is:

ŷ tþ1 ¼ f̂ ð~Yt;
~Wtþ1; ~zÞ

and longer time horizons can be forecast by substituting intermediate predictions:

ŷ tþh ¼ f̂ ðŶtþh� 1;
~Wtþh; ~zÞ: ð2Þ

Note that we use observed input profiles whenever possible. That is, when Ŷtþh� 1 includes

times t0 � t, we use the original values yt0 and no predictions are necessary. This formulation

can detect nonlinear relationships between past microbial community profiles, interventions,

and host features with taxon j’s current abundance. Further, it can detect interaction effects

between covariates that improve predictive power, and these interactions are often of indepen-

dent interest.

Mirror statistics

Background. The transfer function model in Eqs 1 and 2 summarizes the effects of inter-

ventions Wt on current and future community profiles yt and yt+h. However, they do not pro-

vide inferential guarantees on the existence of either immediate or delayed effects following

the intervention. Therefore, we propose a mirror statistics approach [12], which supports vari-

able selection under minimal assumptions, symmetry under the null hypothesis, and weak

dependence across tests, whose plausibility is discussed below.

Before discussing its application within our context, we briefly review multiple testing with

mirror statistics. Suppose that data have been drawn from a linear model y = X β + � and our goal

is to identify the nonzero elements of β 2 RJ. The intuition behind mirrors is to split the data into

Dð1Þ ¼ ðXð1Þ; yð1ÞÞ and D(2) = (X(2), y(2)) and check for agreement in the estimates b̂ð1Þ and b̂ð2Þ

across splits. For coordinate j, consider the statistic Mj ¼ sign
�
b̂
ð1Þ

j b̂
ð2Þ

j

�h�
�
�b̂
ð1Þ

j

�
�
�þ

�
�
�b̂
ð2Þ

j

�
�
�

i
. Observe
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that if there is a true effect, then we expect Mj to be positive because the signs across splits should

agree. In contrast, under the null, we will assume Mj is symmetric about 0—our estimator b̂ j

should not have a preference for either negative or positive estimates. Observe that
h�
�
�b̂
ð1Þ

j

�
�
�þ

�
�
�b̂
ð2Þ

j

�
�
�

i
gives the magnitude of feature j’s effect, and it is natural to declare significance using the

rule: reject j if Mj> t for some threshold t.
Mirror statistics uses this symmetry assumption to estimate the false discovery rate for any

given t. Specifically, if Mj is symmetric about 0 under the null, then the number of null Mj

above t should roughly match the number of null Mj below −t. Since we expect few true effects

to have Mj< −t, we can estimate the false discovery rate of the above rule using

dFDR tð Þ ¼ jfj:Mj>tgj
jfMj<� tgj

. The mirror algorithm selects the smallest t such that dFDRðtÞ lies below the

target level. Finally, it is possible to repeat this procedure across many random splits and

aggregate evidence across them. See Fig B in S2 Text for a graphical summary. Viewed more

abstractly, the first assumption of this algorithm is that Mj is symmetric about 0 under the null.

While intuitive for linear models, this could hold for other problems, and the specific form of

the statistic is relevant only for validity, not power. Less obviously, the estimate dFDRðtÞ relies

on the assumption that the Mj are at most weakly dependent. In the experiments below, we

empirically investigate mirror statistics’ robustness to violations of this assumption.

At a high level, this algorithm benefits from transforming testing to regression. The

assumptions above are still weaker than the parametric assumptions that accompany many

multiple testing procedures and potentially offer an avenue around the elevated false discover-

ies that can arise when distributional assumptions fail [19]. Moreover, mirror statistics can

serve as a meta-algorithm, wrapping more specialized estimation routines as long as appropri-

ate mirror statistics can be derived. We illustrate this for transfer functions below.

Application to transfer functions. As in the discussion above, we first randomly split

subjects into subsets, Dð1Þ and Dð2Þ. For each split s, we estimate models f̂ ðsÞ using dðiÞt ¼
ðyðiÞtþ1;YðiÞt ;W

ðiÞ
tþ1; zðiÞÞ for subjects i in that split and nonoverlapping segments beginning at

times t. Next, we estimate the counterfactual difference between interventions ~Wt ¼ 1Q and

~Wt ¼ 0Q for each taxon:

PDðsÞj ¼
1

jDðsÞj

X

dðiÞt 2D
ðsÞ

f̂ ðsÞj YðiÞt ; 1Q; z
ðiÞ

� �
� f̂ ðsÞj YðiÞt ; 0Q; z

ðiÞ
� �h i

:

This equation is a partial dependence profile of f̂ ðsÞj [17, 20] measuring the effect of Q consecu-

tive interventions on taxon j. For isolated interventions, we can use (0, . . ., 0, 1, 0, . . ., 0)

instead of 1Q. Intuitively, this approximates the difference in short-term forecasts f̂ ðsÞj of taxon

j’s trajectory under contrasting interventions, with the empirical distributions of YðiÞt and z(i)

used as plug-in estimates for the unknown population distribution. Finally, we define the mir-

ror statistic:

Mj ¼ sign
�
PDð1Þj PDð2Þj

�h�
�
�PDð1Þj

�
�
�þ

�
�
�PDð2Þj

�
�
�

i
;

which gauges the consistency between estimated effects across separate splits. When there are

no true intervention effects on taxon j and �
ðiÞ
t is symmetric around 0, then PDðsÞj is also sym-

metrically distributed around 0, thus satisfying the mirror statistics assumption. Specifically, in

the absence of an intervention effect, any differences between f̂ ðsÞj ðYðiÞt ; 1Q; zðiÞÞ and
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f̂ ðsÞj ðYðiÞt ; 0Q; zðiÞÞ are due to noise. In contrast to the symmetry assumption, weak dependence is

less likely to hold in practice because many taxa may be expected to respond similarly to inter-

ventions. Since the theory of mirror statistics requires weak dependence to guarantee FDR

control, and since violation seems likely, our simulations include a setting with phylogeneti-

cally correlated hypotheses.

Given mirror statistics Mj and a threshold t, we estimate the false discovery proportion

using the same estimator discussed above:

dFDRðtÞ ¼
jfj : Mj < � tgj
jfj : Mj > tgj

: ð3Þ

The choice of t defines a selection set Ĵ 1 of sensitive taxa, and to control the FDR at level q,

we choose the largest t such that dFDRðtÞ � q. We improve power by aggregating across multi-

ple splits, following Algorithm 2 of [12]. Our examples use 25 splits, which is fewer than the 50

in [12], but which nonetheless provides sufficient power in our applications. For delayed

effects, we define analogous PDðsÞ;þhj and Mþh
j using h-step ahead predictions (Eq 2), modifying

the estimate in Eq 3 to use mirrors Mþh0
t across all lags h0 � h.

This methodology is implemented in the R package mbtransfer (https://go.wisc.edu/

crj6k6), which includes functions for estimating transfer function models, simulating counter-

factual trajectories, and performing inference with mirror statistics. Further, the package

includes data structures and utilities for manipulating intervention data and visualizing esti-

mated transfer functions and mirror statistics.

Results

Toy example

Can mbtransfer capture predator-prey dynamics? Using the seqtime package [21], we gener-

ated data from a Lotka-Volterra model [22]:

_y1 ¼ b1y1 � a12y1y2 ðPreyÞ

_y2 ¼ � b2y2 þ a21y1y2 ðPredatorÞ

with parameters b1 = 2 and b2 = a12 = a21 = 1 for 10 time units at discretization Δ = 0.2. This

system exhibits oscillatory dynamics. Further, we perturb the prey’s growth rate during the

intervals t 2 [3, 4] and t 2 [8, 9], changing b1 = 2 to 1. This intervention on the prey’s growth

rate indirectly decreases the predator population size. mbtransfer’s functional form allows it to

capture both species interactions and perturbation effects. We can write the discretized, per-

turbed system as:

y1ðtþDÞ ¼ ð1þ 1ft 2 perturbedg þ Db1 � Da12y2tÞy1t ð4Þ

y2ðtþDÞ ¼ ð1 � Db2 þ Da21y1tÞy2t ð5Þ

This has the form yt+Δ = f(yt, wt) for an f with interaction effects between the two coordinates

of yt and between y1t and wt = 1{t 2 perturbed}. These interactions are the reason we observe

complex, oscillatory behavior in a simple two-species system.

We trained an mbtransfer model (P = Q = 1) on 500 randomly initialized (y0 * Unif[0, 4])

examples, reserving t 2 [0, 7] and (7, 10] for training and forecasting, respectively. Fig 2 visua-

lizes 8 subjects chosen to represent a range of performance regimes. Adjacent pairs of subjects

represent the minimum, 25%, 75%, and maximum forecasting error, read from the top left to
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bottom right. Across regimes, mbtransfer learns the perturbation effect and the oscillatory

predator-prey relationship. However, it generally “compresses” time, underestimating the

period between peaks. Further, the model underestimates the size of the peaks in subjects with

large populations. To better understand f̂ , Fig C in S2 Text gives partial dependence profiles

[17, 23]. These profiles represent the influence of each input, holding all others fixed, allowing

them to disentangle species-species and perturbation-species relationships. Panels (A) and (E)

reveal that the model understands that the perturbation immediately impacts the prey but not

the predator population. Panels (B—C) and (E—F) relate current with predicted populations.

For example, (C) shows that higher predator populations decrease the forecast prey popula-

tion. A weak interaction effect is present in (B), with the slope decreasing when predator popu-

lations are larger. This is consistent with the first line of Eq 4. A related effect appears in (C),

where slopes become more negative when the prey population is large. Ideally, these lines

should all be exactly linear with gradually varying slopes. In contrast, our estimates are slightly

nonlinear, and the interaction is only clear in large predator populations. This reflects a trade-

off: without making stronger assumptions on the form of f, larger datasets are needed to accu-

rately estimate more subtle interactions.

Simulation study

Data generating mechanism. In general, simulating realistic dynamic microbiome data is

an open problem, especially when aiming to benchmark the relationship between microbes

and their environment [24–27]. To ensure fairness in our evaluation, we simulated data from a

transparent model that captures many microbiome properties while avoiding assumptions

specific to any single model discussed below. Specifically, we adapted an autoregressive nega-

tive binomial factor model to reflect two challenges of microbiome data analysis:

Fig 2. Transfer functions applied to oscillatory predator-prey dynamics. Panels give simulated predator and prey populations over 10 time units.

The grey rectangles indicate periods during which the prey growth rate is decreased. A transfer function model is trained using data up to time 7, and

forecasts are shown as dashed curves. Subjects have been chosen to represent low (top left) to high (bottom right) forecasting error rates. The forecasts

accurately reflect the true perturbation effect and predator-prey relationship; however, they can compress time and dampen large peaks.

https://doi.org/10.1371/journal.pcbi.1012196.g002
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• Phylogenetic correlation: Microbiome data often have correlated taxa due to shared evolu-

tionary ancestry or occupation of similar ecological niches.

• Uneven sequencing depth: In a typical experiment, not all samples are sequenced to the

same read depth. This necessitates sample-wise normalization.

The negative binomial distribution ensures sparsity and overdispersion, characteristics

known to exist in microbiome data. The simulation data-generating mechanism is:

y
ðiÞ
t jy

ðiÞ
t ;φ; b

ðiÞ � NB
�
bðiÞexp

�
y
ðiÞ
t

�
;φ
�

y
ðiÞ
t ¼

XP

p¼1

Apy
ðiÞ
t� p þ

XQ

q¼1

�
Bq þ Cq � zðiÞ

�
wi

t� q þ �
ðiÞ
t

bðiÞ � Gð10; lÞ

�
ðiÞ
t � N ð0;SÞ

In this context, y
ðiÞ
t 2 R

J is a vector, and NB denotes a negative binomial distribution applied

element-wise to each taxon j under a mean-dispersion parameterization. Ap 2 R
J�J

captures

the lag-p competitive/cooperative dynamics between taxon pairs, while Bq 2 R
J�D

represents

the lag-q effect of the D interventions. Cq represents an interaction between host characteristics

and interventions, reflecting that intervention effects may be mediated by specific host fea-

tures. A, B, and C are chosen to be low-rank, and the detailed parameter generation process is

detailed in Section A.1 in S1 Text.

The scaling factor b(i) mimics variation in sequencing depth. The mean and variance of b(i)

are 10

l
and 10

l2, and we set λ to be either 10 or 0.1 to create more or less concentrated sequencing

depths, respectively. The covariance S is designed to capture phylogenetic correlation, with

Sjj0 = (1 + djj0)−α, where djj0 is the cophenetic distance between taxa j and j0 on a balanced binary

tree, a stand-in for real phylogenetic structure. We consider α 2 {0.1, 10} corresponding to

high and low intertaxa correlation. Heatmaps of S when J = 200 are given in Fig D in S2 Text.

Note that even when S is nearly diagonal, the coordinates of yðiÞt are still correlated, a conse-

quence of the low-rank structure of A and B. The motivation for studying alternative depen-

dence structures is to understand their impact on the validity of the mirror statistics-based

selection mechanism, whose theoretical guarantees rely on weak dependence as J tends to

infinity.

A visualization of the trajectories for null and nonnull taxa is given in Fig 3. We generated

108 datasets with varying numbers of taxa, the proportion of null taxa (those unaffected by

interventions), and signal strengths, see Section A.2 in S1 Text.

Model settings and metrics. We gathered performance metrics associated with alterna-

tive normalization, forecasting, and inference approaches. For normalization, we considered

working with the original, untransformed data, the DESeq2 size-factor normalized data [28],

and the size-factor normalized data followed by an asinh transformation [29, 30]. The latter

two transformations account for potentially different library sizes across simulated samples

and the fact that microbiome data can be highly skewed. For forecasting, we applied

MDSINE2, fido, and mbtransfer. The MDSINE2 and fido models are chosen in favor of their

predecessors MDSINE and MALLARD; they are summarized in Section C in S1 Text. We cau-

tion that fido was designed for relative abundance data and may not be suitable for normalized

absolute abundances. However, due to limited options for microbiome intervention analysis

that account for temporal structure, we have included it in the comparison. Both MDSINE2

and fido are Bayesian models, and we kept all priors at their software defaults. In practice,
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these priors could be adapted to the specific scientific problem at hand, and we acknowledge

the inability of our simulation to evaluate this more mindful workflow.

For both fido and mbtransfer, we include two sets of hyperparameters to encourage longer

vs. shorter temporal memories. For fido, we used an RBF kernel with hyperparameters set to

either σ = ρ = 0.5 (short memory) or σ = ρ = 1 (long memory), and we applied mbtransfer with

either P = Q = 2 (short memory) or P = Q = 4 (long memory). MDSINE2 forecasts are formed

by integrating the learned dynamics over future timepoints, setting the initial conditions equal

to the current test sample. Note that MDSINE2 was designed assuming the availability of

qPCR data. Since qPCR data were unavailable for the case studies below, we have simulated

qPCR values centered at 1e9, which is the same order of magnitude as examples available in

the MDSINE2 documentation (https://go.wisc.edu/wuvfx4). We excluded MDSINE2 on runs

with 400 taxa due to consistently long computation times (> 72 hours). For evaluation, we

computed the mean absolute forecasting error across all taxa up to a time horizon of h = 5 on

held-out subjects. Section A.3 in S1 Text provides details of the evaluation mechanism.

For inference, we compared the mirror algorithm to DESeq2 [28] with the formula

* wt � z, which tests for intervention effects, subject-level effects, and their interaction.

DESeq2 is a negative binomial-based generalized linear model that has exhibited strong per-

formance in differential abundance testing benchmarks [31]. This approach allows for inter-

vention and subject-level effects but does not explicitly model microbiome dynamics. As an

additional baseline, for each taxon, we applied two-sample t-tests to test for a change in mean

between the four samples before and four samples after the start of the intervention. These rel-

atively short windows were chosen because the effect often decays rapidly following the initial

event. We adjusted p-values for multiple comparisons using the Benjamini-Hochberg proce-

dure [32]. We evaluated inferential quality using false discovery proportions and power across

Fig 3. Example data used in the simulation study. Each panel displays one taxon’s trajectories, with rows representing individual subjects. Tile colors

encode abundances, which have been quantile transformed to support cross-taxa comparison. Red borders indicate the samples where the intervention

is present. The first row of taxa (tax1—3) have nonnull effects, while the bottom row are all null. Note the potentially delayed intervention effects in

nonnull taxa.

https://doi.org/10.1371/journal.pcbi.1012196.g003
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time lags. For delayed effects at lag q, we accounted both for taxa with nonzero entries of Bq

and taxa that were indirectly shifted by autoregressive links Ap with taxa that are affected by

the intervention at an earlier time. Formulas for the false discovery proportion and power

across lags are given in Section A.3 in S1 Text.

Evaluating forecasting performance. Fig 4 summarizes cross-validated forecasting per-

formance on DESeq2-asinh transformed data, showing that mean absolute error increases

with the proportion of nonnull taxa and signal strength. This is due to higher variance shifts in

yt during interventions under these settings. MDSINE2 consistently performed worse than

fido and mbtransfer. Fig 5 illustrates the prediction error for holdout subjects in one simula-

tion setting, revealing that minor errors in MDSINE2’s initial forecast become amplified at

longer time horizons. Since MDSINE2 can only refer to one step in the past, it must have either

exponential growth or decay until the community reaches its carrying capacity. While this

behavior does not impact inferences for taxon-perturbation relationships, the main focus of

[8], it restricts the usefulness of simulated hypothetical trajectories. In contrast, mbtransfer

and fido can refer to longer historical windows, supporting more realistic intervention analy-

ses: the second day of a microbiome intervention may have different consequences than the

first.

Across methods, performance declines for larger α. In this case, the phylogenetic correla-

tion is weaker, and there is less signal to borrow from related taxa. The effect of sequencing

depth on performance depends on specific method and data settings. Overall, mbtransfer’s

Fig 4. Simulation forecasting errors for normalized data. The y-axis shows the average MAEk across folds. Within panels, the signal strength and

number of taxa increase from left to right. Column panels give the proportion of intervention-sensitive taxa and the signal strength. Rows distinguish

between settings with different sequencing depth heterogeneity and phylogenetic correlation. Outliers (below 1.5×IQR or above 3×IQR of errors in fido

and mbtransfer) are excluded. Runs that did not complete within 72 hours are omitted. The two hyperparameter settings of fido and mbtransfer

perform similarly. The fido package is comparable to mbtransfer when the intervention strength is weak but deteriorates when the intervention is

strong.

https://doi.org/10.1371/journal.pcbi.1012196.g004
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performance relative to alternatives improves when sequencing depths are more variable,

though forecasting becomes more difficult in this regime. When the intervention effect had a

smaller magnitude or is limited to fewer taxa, fido and mbtransfer performed comparably. In

other cases, mbtransfer was more accurate. We interpret this by noting that, despite its ability

to incorporate interventions, fido’s Gaussian Process assumption enforces temporal smooth-

ness in the predictions. This prevented the model from capturing the sharp changes in abun-

dance during strong interventions. However, as noted above, we have avoided extensive

hyperparameter tuning or tailoring of flexible priors, and it is possible that such optimizations

could improve performance.

Analogous results for alternative transformations are available in Figs E and F in S2 Text.

When the data were not asinh transformed, the mbtransfer model performed worse than

either MDSINE2 or fido. This reversal is consistent with the use of a squared-error loss in the

underlying gradient boosting models, which is not adapted to count data. fido should be pre-

ferred if data must be modeled on the original scale. However, we note that transformations

are often well-justified in microbiome analysis, and an increasing number of formal methods

implement them [33–35]. Fig G in S2 Text gives the average computation time across folds.

MDSINE2 was slower than either fido or mbtransfer. fido and mbtransfer had comparable

computation times except when using DESeq2-asinh transformed data. In this setting, fido

was faster, but mbtransfer was more accurate.

Evaluating inferential performance. For longer time horizons, all methods showed

improved FDR control because more taxa become truly nonnull after instantaneous effects

propagate across the community (Fig 6). DESeq2’s performance is more influenced by the

fraction of nonnull hypotheses, while mirrors are more influenced by the total number of taxa.

For lag 1 effects, DESeq2 and the pre/post t-test fail to control the FDR at the specified level

q = 0.2, likely a consequence of considering samples as independent when they are, in fact,

temporally dependent.

For lag 2 effects, mirrors have slightly lower power than DESeq2. At this lag, both methods

are conservative, except several DESeq2 runs with many taxa and few true nonnulls. Higher

phylogenetic correlation (α = 0.1) inflates the false discovery proportion for mirrors applied to

unnormalized data. Nonetheless, for both high and low phylogenetic correlation, mirrors

Fig 5. Comparison of long-run forecasting residuals. We average errors across all taxa and truncate those with a magnitude greater than 50. A

comparison of forecasting residuals across four folds (rows) in one simulation run suggests that forward integrating the MDSINE2 model can lead to

exponentially increasing forecasting errors.

https://doi.org/10.1371/journal.pcbi.1012196.g005
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effectively control the FDR when the number of taxa is large and the data have been DESeq2-a-

sinh normalized. This is consistent with the improved forecasting performance for trans-

formed data and with Proposition 3.3 of [12], which guarantees FDR control asymptotically as

the number of hypotheses increases. We attribute the reliability and power of mirror statistics

to the fact that its false discovery rate control is always adapted to the dataset from which splits

are drawn rather than a potentially misspecified probabilistic model.

Case studies

Next, we investigated how to use mbtransfer with datasets from two human microbiome stud-

ies. These datasets include experimentally-defined interventions that arise naturally in pro-

spective studies. Despite differences in taxonomic richness, the number of subjects, and the

total number of time points, both explore how environmental change affects the composition

of the microbiome.

Diet and the gut microbiome. The study [1] considered the human gut microbiome’s

response to brief dietary interventions. Twenty participants were recruited and randomly

assigned to “plant” or “animal” interventions, where they were required to follow a plant- or

animal-based diet for five days. Samples were collected for two weeks around the intervention,

typically at a daily frequency, yielding 8 and 15 samples per participant due to occasionally

missed time points. We use cubic spline interpolation to evenly interpolate time points onto a

daily grid, motivated by [36]. Initially, the data contained 17310 taxa. Following the simulation

results, we DESeq2-asinh normalized the data. We further filtered to retain taxa present in at

Fig 6. Inferential performance in the simulation experiment. Rows encode normalization methods and phylogenetic correlation. Columns have

varying lags and compare mirror statistics, DESeq2, and a pre-post t-test. Color hue and shade encode the number of taxa and proportion of nonnull

hypothesis, respectively. The target FDR has been set to q = 0.2 (vertical grey line). DESeq2 lacks FDR control for lag one effects in any simulation

context. mbtransfer’s mirror algorithm controls the FDR when given DESeq2-asinh transformed data and sufficiently many taxa.

https://doi.org/10.1371/journal.pcbi.1012196.g006
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least 40% of the samples, resulting in 191 taxa. This reduction allowed us to focus our analysis

on the “core” microbiome [37, 38].

We used mbtransfer with P = Q = 2 and wðiÞt ¼ ðIðt 2 Animal Diet ShiftÞ; Iðt 2
Plant Diet ShiftÞÞ 2 ½0; 1�2 to fit our model, creating two intervention series. These series may

lie between 0 and 1 due to interpolated time points lying in transitions between active and

inactive periods. No additional subject-level covariates z(i) were available. Fig 7 shows in- and

out-of-sample forecasts. Forecasting performance deteriorated out-of-sample, highlighting the

between-participant heterogeneity in microbiome profiles, particularly within the lowest

quantile of abundance. In-sample correlations all lied between r̂ 2 ½0:731; 0:896�. In contrast,

out-of-sample correlation ranged from r̂ ¼ 0:123 (low abundance, lag h = 3) to 0.558 (high

abundance, h = 1), see Table A in S2 Text for details. Forecasting performance was highest on

shorter time horizons and for the most abundant taxa. It is possible that, in rare taxa, a predic-

tion model that accounts for sparsity may exhibit higher accuracy. For reference, we generated

analogous forecasts with MDSINE2 and fido (Tables B—C and Figs H—I) in S2 Text. Within

previously observed subjects, mbtransfer is the top performer, except in three settings with

long time horizons and lower quantiles of abundance, where fido performs strongest. In con-

trast, on previously unobserved subjects, fido outperforms other methods, apart from two set-

tings where MDSINE2 is preferred. This performance aligns with the simulation, which found

that mbtransfer can outperform fido when the signal-to-noise ratio is high, while fido’s evi-

dence sharing enables better performance in lower signal regimes.

Fig 7. mbtransfer forecasting error on the diet intervention dataset. The y-axis is faceted by quantiles of abundance and the x-axis is faceted by time

horizon h. In-sample error refers to errors made at new timepoints for individuals who appeared in the training data, while out-of-sample predictions

are made on individuals absent from training. Performance is strongest in shorter time horizons and for more abundant taxa.

https://doi.org/10.1371/journal.pcbi.1012196.g007
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After assessing model performance, we computed mirror statistics for time lags h = 1, . . ., 4

to evaluate the effect of a four-day shift to an animal diet. Fig L in S2 Text shows the mirror sta-

tistic distributions for each taxon and each lag. Increasing magnitudes across lags in certain

taxa suggest that the diet intervention effects are not instantaneous but accumulate over conse-

cutive days. Next, Fig 8A shows the median difference between counterfactual trajectories for

a subset of significant taxa. Since we cannot visualize all significant taxa simultaneously, we

chose this representative subset by applying principal component analysis to the simulated tra-

jectory differences, projecting onto the first component, and selecting every sixth taxon

according to that ordering. Some taxa (e.g., OTU000006) exhibited immediate but transient

effects, while others (e.g., OTU000065) showed gradual but sustained changes. Further, in sev-

eral taxa (e.g., OTU000118, OTU000012), an initial decrease was followed by a long-run

increase, which is supported by the associated participant-level data. Across taxa in Fig 8A, the

ribbons for the birth control and no birth control groups generally overlap. Since these ribbons

reflect the range of the estimated counterfactual difference across those groups, this implies

that the model did not detect a relationship between the intervention’s effect on microbial

composition and birth control status. Therefore, the effect of the birth event may be uniform

across baseline community profiles. The main benefit of a transfer function modeling

approach is the model’s capacity to learn different shapes of counterfactual trajectories while

still maintaining FDR control.

For comparison, the original, interpolated data for a subset of taxa is shown in Fig 8B.

These views are consistent with the counterfactual trajectories, but they are less compact and

are obfuscated by the higher degree of sampling noise. Our findings align with those of [1], but

we can better describe ecosystem dynamics by modeling the temporal relationship between

diet intervention and microbiome community profiles.

Birth and the vaginal microbiome. We next re-analyzed data from [2], which followed

49 subjects to study how birth influences the composition of the mother’s vaginal microbiome.

We considered birth as an intervention. We DESeq2-asinh normalized the abundance and

Fig 8. Intervention-sensitive taxa in the diet study. (A) Counterfactual difference in simulated trajectories for a subset of the selected taxa in the diet

study. (B) Subject-level data from the same taxa, with each row representing a subject and each column a timepoint, potentially interpolated from the

original, unevenly sampled measurements. These data are consistent with the interpretations from the counterfactual simulation. For example,

OTU000006 often shows transient increases (e.g., Animal1, and Animal6) while OTU000065 has more prolonged departures (e.g., Animal3 and Animal

9).

https://doi.org/10.1371/journal.pcbi.1012196.g008
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lightly filtered the data to 29 taxa—this small number is a consequence of the low diversity of

the vaginal microbiome. There was regular biweekly sampling except near birth, where sam-

ples were gathered daily. Thus, we interpolated to a biweekly resolution.

We used mbtransfer with taxonomy and intervention lags P = Q = 2 and contraception

usage as a subject-level covariate. Fig J in S2 Text shows in- and out-of-sample forecasting

accuracy. Compared to Fig 7 in the previous analysis, in and out-of-sample performances are

more comparable, reflecting the larger sample size of this study. We also evaluated forecasts

using fido; predictions made using MDSINE2 diverge. We set the fido hyperparameters to σ =

10 and ρ = 0.1 to account for the time scale of this problem. Note that some of fido’s forecasts

for new subjects yielded missing values, and these were imputed with the mean abundance for

that taxon among non-missing entries for that subject. Results appear in Tables D—E and Figs

J—K in S2 Text. Fido outperforms mbtransfer for longer time horizons (20–40 days) on previ-

ously observed subjects. For other settings, mbtransfer yields better forecasts. We speculate

that this improvement for out-of-sample forecasts, relative to the diet intervention, is a conse-

quence of the larger sample size for this study.

Fig M in S2 Text shows the taxon-level mirror statistics. Compared to the diet intervention,

the birth intervention caused more pervasive shifts. In light of the simulation results, these

findings should be considered tentative, because this problem has relatively few taxa. We gen-

erated four counterfactual trajectories for all subjects to understand how birth influences indi-

vidual taxa and whether any effects are modulated by contraception use. Specifically, we

computed f̂ ðYt� 1;
~Wt; ~zÞ for ~W 2 f1Q; 0Qg representing presence or absence of the birth event

and ~z 2 f0; 1g denoting re-initiation of contraceptive use following birth. Fig 9A suggests the

absence of an interaction with contraception use. This may be a consequence of the fact that

57% of subjects were missing any data on contraception use—though [2] discussed plausible

mechanisms for how contraception use can influence the postpartum microbiome, our model

did not detect a strong enough association to confirm this hypothesized interaction effect.

Like in the diet intervention, we can distinguish between response trajectories. Members of

the genus Lactobacillus were clearly depleted, while other taxa appeared to take advantage of

Fig 9. Intervention-sensitive taxa in the pregnancy study. (A) Counterfactual differences for a subset of selected taxa from the re-analysis of [2].

Counterfactual differences are computed for each subject in the data, and bands represent the first and third quartiles of differences across subjects.

Since the bands for birth control reinitiation overlap, we conclude that the model does not learn the interaction effects between the intervention and

contraception use. (B) The corresponding subject-level data grouped by birth control reinitiation survey response. Note that these data have

interpolated to the biweekly level to account for uneven sampling times.

https://doi.org/10.1371/journal.pcbi.1012196.g009
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novel niches opened up by the postpartum environment. For example, Porphyromonas
appeared briefly during the same window that the Lactobacilli disappeared. Fig 9B compares

these trajectories with interpolated observed data. As before, we see that the learned trajecto-

ries denoised the original data, and consistent with the lack of interaction, we did not observe

systematic associations between postpartum community trajectory and contraception use.

Discussion

mbtransfer adapts transfer function models to the dynamic microbiome context. The

approach is flexible and interpretable, enabling intervention analysis without assuming a

restrictive functional form and supporting the simulation of counterfactual trajectories. We

have complemented this modeling approach with a formal inferential mechanism, leveraging

recent advances in selective inference. A simulation study illuminated our method’s properties

across data-generating settings, and our data analysis highlighted its practical application in

contrasting microbiome studies.

We envision several avenues for future research. First, while our focus has been on develop-

ing mirror statistics to detect intervention effects, the same approach could be extended to sup-

port the inference of microbe-microbe and host-microbe relationships. The partial

dependence profiles in Fig C in S2 Text suggests that mirror statistics could be a promising

approach for FDR-guaranteed inference of microbe interaction networks, and future system-

atic experiments should explore their validity and power. Our simulation study revealed that

forecasting performance depends on normalization strategy, and identifying the optimal nor-

malization for transfer function modeling or understanding whether it is possible to bypass it

entirely is an open problem [39, 40]. The construction of mirror statistics via partial depen-

dence profiles depends only on having access to a simulator f that can generate hypothetical

responses, and it could be used to contrast alternative initial states yt or host features z. Second,

developing a transfer function model that learns the entire distribution of responses p(yt|Yt−1,

Wt, z) would be valuable. This probabilistic analog could enable design of interventions where

moderate and consistent effects are preferable to strong but erratic ones [41–43]. Finally,

extending our approach to continuous-time autoregressive processes would allow irregular

sampling frequencies, eliminating the need for interpolation.

We have introduced a flexible but rigorous approach to a recurring microbiome data analy-

sis challenge: How can we quantify the influence of environmental shifts on a microbial eco-

system? Our transfer function perspective has guided the proposed intervention analysis, and

we linked the resulting nonlinear models with modern computational inference based on mir-

ror statistics. This facilitates the stability and attribution analysis critical for moving beyond

purely descriptive conclusions [44, 45]. As microbiome studies continue to investigate more

nuanced questions about ecosystem dynamics, similarly formal simulation and inference

methods will play an essential role.
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22. Stein RR, Bucci V, Toussaint NC, Buffie CG, Rätsch G, Pamer EG, et al. Ecological Modeling from

Time-Series Inference: Insight into Dynamics and Stability of Intestinal Microbiota. PLoS Computational

Biology. 2013 Dec; 9(12):e1003388. Available from: http://dx.doi.org/10.1371/journal.pcbi.1003388.

PMID: 24348232

23. Baniecki H, Kretowicz W, Piatyszek P, Wisniewski J, Biecek P. dalex: Responsible Machine Learning

with Interactive Explainability and Fairness in Python. Journal of Machine Learning Research. 2021; 22

(214):1–7. Available from: http://jmlr.org/papers/v22/20-1473.html.

24. Kodikara S, Ellul S, Cao KAL. Statistical challenges in longitudinal microbiome data analysis. Briefings

in Bioinformatics. 2022; 23. Available from: https://api.semanticscholar.org/CorpusID:250528377.

PMID: 35830875

25. Ma S, Ren B, Mallick H, Moon YS, Schwager EH, Maharjan S, et al. A statistical model for describing

and simulating microbial community profiles. PLoS Computational Biology. 2021; 17. Available from:

https://api.semanticscholar.org/CorpusID:232412283. PMID: 34516542

26. He M, Zhao N, Satten GA. MIDASim: a fast and simple simulator for realistic microbiome data. bioRxiv.

2023;Available from: https://api.semanticscholar.org/CorpusID:257775001.

27. Zhou B, Li H. STEMSIM: a simulator of within-strain short-term evolutionary mutations for longitudinal

metagenomic data. Bioinformatics. 2023; 39. Available from: https://api.semanticscholar.org/

CorpusID:258565971. PMID: 37154701

28. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data

with DESeq2. Genome Biology. 2014; 15. https://doi.org/10.1186/s13059-014-0550-8 PMID:

25516281

29. Callahan BJ, Sankaran K, Fukuyama J, McMurdie PJ, Holmes SP. Bioconductor workflow for micro-

biome data analysis: from raw reads to community analyses. F1000Research. 2016; 5:1492. https://

doi.org/10.12688/f1000research.8986.2 PMID: 27508062

PLOS COMPUTATIONAL BIOLOGY mbtransfer

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012196 June 14, 2024 18 / 19

https://doi.org/10.1186/s40168-018-0584-3
https://doi.org/10.1186/s40168-018-0584-3
https://www.jmlr.org/papers/v23/19-882.html
https://doi.org/10.1080/01621459.1975.10480264
https://doi.org/10.1080/01621459.1975.10480264
https://api.semanticscholar.org/CorpusID:30548751
https://api.semanticscholar.org/CorpusID:30548751
http://www.ncbi.nlm.nih.gov/pubmed/26100887
https://doi.org/10.3390/e23020230
http://www.ncbi.nlm.nih.gov/pubmed/33669462
https://doi.org/10.1073/pnas.2104683118
https://doi.org/10.1073/pnas.2104683118
http://www.ncbi.nlm.nih.gov/pubmed/34480002
https://api.semanticscholar.org/CorpusID:34575587
https://api.semanticscholar.org/CorpusID:34575587
https://doi.org/10.1214/aos/1013203451
http://dx.doi.org/10.1186/s13059-022-02648-4
http://dx.doi.org/10.1186/s13059-022-02648-4
http://www.ncbi.nlm.nih.gov/pubmed/35292087
http://dx.doi.org/10.1186/s40168-018-0496-2
http://dx.doi.org/10.1186/s40168-018-0496-2
http://www.ncbi.nlm.nih.gov/pubmed/29954432
http://dx.doi.org/10.1371/journal.pcbi.1003388
http://www.ncbi.nlm.nih.gov/pubmed/24348232
http://jmlr.org/papers/v22/20-1473.html
https://api.semanticscholar.org/CorpusID:250528377
http://www.ncbi.nlm.nih.gov/pubmed/35830875
https://api.semanticscholar.org/CorpusID:232412283
http://www.ncbi.nlm.nih.gov/pubmed/34516542
https://api.semanticscholar.org/CorpusID:257775001
https://api.semanticscholar.org/CorpusID:258565971
https://api.semanticscholar.org/CorpusID:258565971
http://www.ncbi.nlm.nih.gov/pubmed/37154701
https://doi.org/10.1186/s13059-014-0550-8
http://www.ncbi.nlm.nih.gov/pubmed/25516281
https://doi.org/10.12688/f1000research.8986.2
https://doi.org/10.12688/f1000research.8986.2
http://www.ncbi.nlm.nih.gov/pubmed/27508062
https://doi.org/10.1371/journal.pcbi.1012196


30. Jeganathan P, Holmes SP. A Statistical Perspective on the Challenges in Molecular Microbial Biology.

Journal of Agricultural, Biological and Environmental Statistics. 2021; 26:131–160. https://doi.org/10.

1007/s13253-021-00447-1 PMID: 36398283

31. Calgaro M, Romualdi C, Waldron L, Risso D, Vitulo N. Assessment of statistical methods from single

cell, bulk RNA-seq, and metagenomics applied to microbiome data. Genome Biology. 2020; 21. https://

doi.org/10.1186/s13059-020-02104-1 PMID: 32746888

32. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to

Multiple Testing. Journal of the Royal Statistical Society Series B (Methodological). 1995; 57(1):289–

300. Available from: http://www.jstor.org/stable/2346101.

33. McKnight DT, Huerlimann R, Bower DS, Schwarzkopf L, Alford RA, Zenger KR. Methods for normaliz-

ing microbiome data: An ecological perspective. Methods in Ecology and Evolution. 2018; 10:389–400.

https://doi.org/10.1111/2041-210X.13115

34. Chen L, Reeve J, Zhang L, Huang S, Wang X, Chen J. GMPR: A robust normalization method for zero-

inflated count data with application to microbiome sequencing data. PeerJ. 2018; 6. https://doi.org/10.

7717/peerj.4600 PMID: 29629248

35. Jiang R, Li WV, Li JJ. mbImpute: an accurate and robust imputation method for microbiome data.

Genome Biology. 2021; 22. https://doi.org/10.1186/s13059-021-02400-4 PMID: 34183041

36. Ruiz-Perez D, Lugo-Martinez J, Bourguignon N, Mathee K, Lerner B, Bar-Joseph Z, et al. Dynamic

Bayesian networks for integrating multi-omics time-series microbiome data. bioRxiv. 2019;.

37. Shade A, Handelsman J. Beyond the Venn diagram: the hunt for a core microbiome. Environmental

microbiology. 2012; 14 1:4–12. https://doi.org/10.1111/j.1462-2920.2011.02585.x PMID: 22004523

38. Neu AT, Allen EE, Roy K. Defining and quantifying the core microbiome: Challenges and prospects.

Proceedings of the National Academy of Sciences of the United States of America. 2021; 118 51.

https://doi.org/10.1073/pnas.2104429118 PMID: 34862327

39. Nixon MP, Gloor GB, Silverman JD. Beyond Normalization: Incorporating Scale Uncertainty in Micro-

biome and Gene Expression Analysis. Biorxiv. 2024 Apr;Available from: http://dx.doi.org/10.1101/2024.

04.01.587602. PMID: 38617212

40. Nixon MP, McGovern KC, Letourneau J, David LA, Lazar NA, Mukherjee S, et al. Scale Reliant Infer-

ence. Biorxiv. 2022;Available from: https://arxiv.org/abs/2201.03616.

41. Thompson J, Zavala VM, Venturelli OS. Integrating a tailored recurrent neural network with Bayesian

experimental design to optimize microbial community functions. bioRxiv. 2022;.

42. Fannjiang C, Bates S, Angelopoulos AN, Listgarten J, Jordan MI. Conformal prediction under feedback

covariate shift for biomolecular design. Proceedings of the National Academy of Sciences of the United

States of America. 2022; 119. https://doi.org/10.1073/pnas.2204569119 PMID: 36256807

43. Jeganathan P, Callahan BJ, Proctor DM, Relman DA, Holmes SP. The Block Bootstrap Method for Lon-

gitudinal Microbiome Data. arXiv: Methodology. 2018;.

44. Efron B. Prediction, Estimation, and Attribution. International Statistical Review. 2020; 88:S28–S59.

https://doi.org/10.1111/insr.12409

45. Yu B. Three principles of data science: predictability, computability, and stability (PCS). 2018 IEEE

International Conference on Big Data (Big Data). 2018;p. 4–4.

46. Center for High Throughput Computing. for High Throughput Computing C, editor. Center for High

Throughput Computing. Center for High Throughput Computing; 2006. Available from: https://chtc.cs.

wisc.edu/.

PLOS COMPUTATIONAL BIOLOGY mbtransfer

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012196 June 14, 2024 19 / 19

https://doi.org/10.1007/s13253-021-00447-1
https://doi.org/10.1007/s13253-021-00447-1
http://www.ncbi.nlm.nih.gov/pubmed/36398283
https://doi.org/10.1186/s13059-020-02104-1
https://doi.org/10.1186/s13059-020-02104-1
http://www.ncbi.nlm.nih.gov/pubmed/32746888
http://www.jstor.org/stable/2346101
https://doi.org/10.1111/2041-210X.13115
https://doi.org/10.7717/peerj.4600
https://doi.org/10.7717/peerj.4600
http://www.ncbi.nlm.nih.gov/pubmed/29629248
https://doi.org/10.1186/s13059-021-02400-4
http://www.ncbi.nlm.nih.gov/pubmed/34183041
https://doi.org/10.1111/j.1462-2920.2011.02585.x
http://www.ncbi.nlm.nih.gov/pubmed/22004523
https://doi.org/10.1073/pnas.2104429118
http://www.ncbi.nlm.nih.gov/pubmed/34862327
http://dx.doi.org/10.1101/2024.04.01.587602
http://dx.doi.org/10.1101/2024.04.01.587602
http://www.ncbi.nlm.nih.gov/pubmed/38617212
https://arxiv.org/abs/2201.03616
https://doi.org/10.1073/pnas.2204569119
http://www.ncbi.nlm.nih.gov/pubmed/36256807
https://doi.org/10.1111/insr.12409
https://chtc.cs.wisc.edu/
https://chtc.cs.wisc.edu/
https://doi.org/10.1371/journal.pcbi.1012196

