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Abstract

Glacier mapping is key to ecological monitoring in the Hindu Kush Himalayan
(HKH) region. Climate change poses a risk to individuals whose livelihoods depend
on the health of glacier ecosystems. In this work, we present a machine learning
based approach to support ecological monitoring, with a focus on glaciers. Our
approach is based on semi-automated mapping from satellite images. We utilize
readily available remote sensing data to create a model to identify and outline
both clean ice and debris-covered glaciers from satellite imagery. We also release
data and develop a web tool that allows experts to visualize and correct model
predictions, with the ultimate aim of accelerating the glacier mapping process.

1 Introduction

Glaciers are a source of freshwater and are critical to the Hindu Kush Himalayan (HKH) region both
ecologically and societally [1]. However, glaciers are continuing to shrink at an alarming rate and this
will result in diminished freshwater flow. This is likely to cause adverse effects for the benefactors
of freshwater flow from glaciers. Additionally, glacier shrinkage has been shown to be a significant
factor in the current sea-level rise [4]. This calls for effective and efficient methods to map and
delineate glaciers in order to monitor changes and plan integrated water resource management and
glacial hazard and risk management.

In such areas, remote sensing offers complementary information that can be used to monitor glaciers
[13, 12]. Remote sensing allows the estimation of parameters like snow cover, glacier elevation, and
ice index over large geographical and temporal scales. Utilising this information, different automated
methods of delineating glaciers have been developed. However, the efficacy and accuracy of these
methods are affected by cloud cover, highly variable snow conditions, and the spectral similarity of
supra-glacial debris with moraines and bedrock [3]. These errors are somewhat addressed through
the application of semi-automated mapping methodologies, which combine outputs from automated
methods with manual interventions. However, this is labor intensive and time-consuming. Machine
learning techniques can play a significant and positive role in speeding the process up.

We apply machine learning techniques to automate methods for glacier mapping from satellite
imagery. We utilize semantic segmentation - a deep learning approach that performs pixel-wise
classification in images. Using the HKH glacier region as an area of study, we use available satellite
imagery from Landsat and glacier labels provided by the International Centre for Integrated Mountain
Development (ICIMOD) - a regional intergovernmental learning and knowledge sharing center
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serving the eight regional member countries of the HKH [2]. Using these resources, we develop an
extensible pipeline, a dataset, and baseline methods that can be utilized for automated glacier mapping
from satellite images. We also present qualitative and quantitative results describing properties of
our models. Additionally, we deploy our models as a web-based tool to demonstrate how machine
learning can complement, rather than supplant, existing workflows.

2 Study Area and Data Sources

Our experiments are carried out on the HKH region. The HKH is also known as the Third Pole of
the world as it consists of one of the largest concentrations of snow and ice besides the two poles. It
constitutes more than 4 million square kilometers of hills and mountains in the eight countries of
Afghanistan, Bangladesh, Bhutan, China, India, Myanmar, Nepal and Pakistan. Glaciers have been
periodically identified and classified by experts at the ICIMOD [2]. Glaciers are categorized as either
clean ice or debris-covered subtypes.

The labels we use have been generated through a semi-automated pipeline based on hyperpixel
segmentation. Historically, ICIMOD has used the eCognition software [7] to segment Landsat imagery
into image objects defined by a contiguous set of pixels with similar intensity value. Those hyperpixels
that contain debris or ice glacier are then merged and downloaded for refinement. The manual
refinement phase involves removing labeled regions that are not at plausible glacier elevations or
which do not pass specified Normalised Difference Vegetation Index (NDVI), Normalised Difference
Snow Index (NDSI) or Normalised Difference Water Index (NDWI) thresholds [8, 9, 6].

We release our data in the LILA BC repository. The input data come in two forms – the original 35
Landsat tiles and 14,190 extracted numpy patches. Labels are available as raw vector data in shapefile
format and as multichannel numpy masks. Both the labels and the masks are cropped according to
the borders of HKH. The numpy patches are all of size 512× 512 and their geolocation information,
time stamps, and source Landsat IDs are available in a geojson metadata file.

3 Model Architecture and Methodological Pipeline

The task of identifying and mapping glaciers in remote sensing images fits well within the framework
of semantic segmentation. We adapted the U-Net architecture for this task [14]. The U-Net is a fully
convolutional deep neural network architecture; it consists of two main parts, an encoder network
and a decoder network.

The model was trained using gradient descent and the Dice loss [15] was used as the optimization
criterion (see the Appendix). We adapt a human-in-the-loop approach to correct the segmentation
errors made by the model. This is useful because glacier mapping often requires expert opinion and
models make errors that need to be resolved by people.

Figure 1: Our methodological pipeline first converts LE7 tiles to preprocessed patches used for model
training. The trained model is deployed as an interactive web tool.

Our approach is summarized in a multi-step pipeline presented in Figure 1. It first converts the raw
tiles into patches and converts their vector data labels to masks. We filter, impute and normalize the
resulting patch-mask pairs before splitting them into train, test and validation data sets. The code to
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Figure 2: Experimental results for channel selection. The x-axis indicates which LE7 bands were
used. Color describes whether elevation and slope were used. Runs using NDWI, NDSI, and NDVI
are labeled with triangles. Elevation and slope data significantly boost performance, and using all
bands is better than using any subset. Results when using RF features are enclosed in a square.

replicate our process can be found in a GitHub repository1. The script to query Landsat 7 tiles using
Google Earth engine is in another GitHub repository2.

4 Experiments

In this section, we characterize the performance of existing methods on tasks related to glacier
segmentation. We intend to provide practical heuristics and isolate issues in need of further study.

Band Selection Model performance tends to deteriorate in the many-bands limited-training-data
regime [11]. This is often alleviated through band subset selection. Here, we study whether specific
channels are more relevant for glacier mapping. We experimented with the combination of bands B5
(Shortwave infrared), B4 (Near infrared), and B2 (Green) which is the false-color composite combi-
nation used to differentiate snow and ice from the surrounding terrain when manually delineating
glaciers. We compare this with (1) the true color composite band combination, B1 (Blue), B2 (Green),
B3 (Red) and (2) all Landsat 7 bands. We also consider (1) slope and elevation from the Shuttle Radar
Topography Mission (SRTM) as additional channels and (2) spectral indices - snow index (NDSI),
water index (NDWI), and vegetation index (NDVI) - as used in manual glacier delineation [2]. Lastly,
we perform pixel-wise classification on all channels with a random forest (RF) and select channels
with feature importance scores greater than 5%, see appendix Figure 5.

Figure 2 shows performance when varying input channels. The experiments are carried out on the
383 patches with at least 10% of pixels belonging to either clean ice or debris-covered glaciers. We
evaluated the model over 55 patches using Intersection over Union (IoU). The RF classifier features
did not achieve the maximum IoU, likely due to a lack of spatial context. Adding elevation and slope
channels provides an improvement of 10-14% IoU. This agrees with domain knowledge – elevation
and slope maps are referred to in the current process. Appendix Figure 6 illustrates that the model
learns that low elevation and steep areas typically do not contain glaciers. Using NDVI, NDSI, and
NDWI improves results when input channels are different from those used to define the indices.

Debris covered versus clean ice glaciers There are two types of glaciers we care about: clean
ice glaciers and debris-covered glaciers. Clean ice glaciers have an appearance similar to snow.
Debris-covered glaciers are covered in a layer of rock and flow through valley-like structures. For
segmentation, clean ice glaciers are often confused with snow, resulting in false positives. Debris-
covered glaciers are more similar to the background, often leading to false negatives. Debris-covered
glaciers are also much rarer. We experimented with binary and multiclass approaches to segmentation.

We trained a 2-class model to segment glacier from background areas and compared it with 3-class
model for clean ice vs. debris-covered vs. background. We also compared the 3-class model with two

1https://github.com/krisrs1128/glacier_mapping/
2https://github.com/Aryal007/GEE_landsat_7_query_tiles/
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Figure 3: Example imagery and labels (a - c), with model predictions (d - f). Blue and orange labels
are for clean ice and debris-covered glaciers, respectively. (d) A model trained to recognize the
union of clean ice or debris-covered glaciers fails to recognize major debris-covered glaciers. (e - f)
Multiclass and combined binary models give comparable predictions.

Figure 4: The image on the left shows the polygonized prediction for an area of interest. The image
to the right shows the tool’s functionality of allowing users to correct predictions.

binary models for each glacier type. We filtered to patches where both debris-covered and clean ice
glaciers were present, resulting in 648 training patches and 93 validation patches. Since many patches
contain few positive class pixels, we evaluate IoU over the whole validation set rather than the mean
IoU per patch. Table 2 shows that the multiclass model and binary model deliver comparable overall
performance. However, the approaches differ in regions with higher coverage from debris-covered
glaciers. Table 3 and figure 3 show an increase in the performance gap in favour of the multiclass
model as the debris-covered glacier percentage increases.

5 Glacier Mapping Tool

To support the work of geospatial information specialists to delineate glaciers accurately we developed
an interactive glacier mapping tool. The tool allows users to test our segmentation models on different
sources of satellite imagery. Users can visualize predictions in the form of polygons and edit them
to obtain a glacier map for the area of interest. This interactivity supports the process of validating
models, identifying systematic sources of error, and refining predictions before release. Users can
compare data sources, which can clarify ambiguities. As future work, we intend to incorporate model
retraining functionality. A screenshot from the tool is visible in Figure 4.
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6 Conclusion and Future Work

We have presented deep learning and remote sensing techniques that support semi-automated glacier
mapping. We have experimentally explored the effects of channel selection and task definition on
performance. Finally, we describe a web tool to provide feedback and correct errors made by the
model. More work needs to be done to (1) incorporate the human feedback into the trained model
through some form of active learning, (2) develop network architectures and criteria that better use
domain knowledge, and (3) understand the generalizability of these methods to regions outside of the
Hindu Kush Himalaya.
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A Implementation Details

We query Landsat 7 raw images used for creating labels [2] using Google Earth Engine. In addition
to the raw Landsat 7 tiles, we compute Normalized-Difference Snow Index (NDSI), Normalized-
Difference Water Index (NDWI), and Normalized-Difference Vegetation Index (NDVI) and add
them as additional bands to the tiles. Finally, we query slope and elevation from the Shuttle Radar
Topography Mission [5] and add them as additional bands to give us final tiles with 15 bands. The
vector data corresponding to glacier labels [10] is downloaded from ICIMOD Regional Database
System (RDS). We then follow pre-processing and post-processing as shown in Figure 1 to prepare
the data. The pre-processing steps include conversion of vector data to image masks, cropping
the input image and vector data to HKH borders, and slicing the mask and tiles to patches of size
512× 512 pixels. We then filter patches with low glacier density (thresholds vary by experiment),
impute nan values with 0, normalize across channel for each patch, and randomly split the data into
train (70%) / dev (10%) / test (10%).

We make use of a U-Net architecture [14] for the segmentation of glacier labels. We use a kernel size
of 3×3 for convolution layers in the downsampling operations and kernel size of 2×2 for convolution
layers and transpose convolution layers in the upsampling layers. For the pooling operation, we use
maxpool with kernel size 2× 2. The output of the first convolution operation has 16 channels and
we double the channels after each convolutional layer in during downsampling and in the bottleneck
layer. We halve the output channels in each convolutional layer during upsampling. We use a depth of
5 meaning there are 5 downsampling layers followed by 5 upsampling layers with a bottleneck layer
in between. We use Adam as our optimizer with a learning rate of 1e−4. We use spatial dropout [16]
of 0.3 and `1 regularization with λ = 5e−4 to prevent the model from overfitting on training data.

B Supplemental Tables and Figures

Figure 5: Feature importance scores using Random Forest. Slope and elevation are key variables.

Table 1: A comparison of IoU for the U-Net based model architecture with other traditional machine
learning approaches. Pixels from train slices are sampled to train machine learning classifiers to
predict labels for each pixel. There are a total of 15 features for each pixels, one for value in each
band, and one of the three output labels. The output segmentation mask is generated by predicting the
class for each pixel in the test slices using trained classifiers. The U-Net based classifier outperforms
conventional machine learning classifiers especially in case of debris glaciers.

Model IoU of Clean Ice Glaciers IoU of Debris Glaciers
Random Forest 0.5807 0.2024
Gradient Boosting 0.5663 0.1930
Multi-Layered perceptrons 0.5452 0.1781
U-Net 0.5829 0.3707
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Figure 6: Slope and elevation are critical for improving precision of glacier predictions. Light blue
labels represent both clean ice and debris-covered glaciers. Light yellow and green are areas of high
elevation (e) and slope (f). Clean ice glaciers tend to be found at high elevation, while debris-covered
glaciers are found in valleys. Neither type of glacier is found on steep slopes.

Table 2: A comparison of error rates on clean ice and debris-covered glaciers across three modeling
approaches. The first row is a model trained to predict glacier or background, without distinguishing
between debris-covered or ice glaciers. The second row is a multiclass model trained to simultaneously
segment debris-covered and clean ice glacier. The final row gives the result of training two separate
models to distinguish each type of glacier. Results are comparable across approaches, with a slight
edge for the split training approach.

Model IoU of Glaciers IoU of Clean Ice Glaciers IoU of Debris Glaciers
Binary Model 0.476 - -
Multiclass Model 0.473 0.456 0.291
Two Binary Models 0.48 0.476 0.31

Table 3: The exact numbers used in Figure 7

.

% of Debris % of Data Binary Class IoU Multiclass IoU IoU Difference
> 0% 100% 0.476 0.473 -0.3%
> 1% 77% 0.523 0.532 +0.9 %
> 2% 52% 0.524 0.544 +2%
> 5% 18% 0.497 0.571 +7.4%

> 10% 6% 0.46 0.603 +14.3%
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Figure 7: Effect of debris percentage on IoU. The multiclass model performs well on areas with high
density of debris-covered glaciers. The binary model trained to distinguish any type of glacier from
background suffers in these regions. When making no distinguish between glacier types, the model
only learns to recognize clean-ice glaciers.

Figure 8: (a) One of three geographically disjoint train and test sets used in a supplemental experiment
on geographic generalization (results in Figure 9). Each large square is a LE7 tile, each shaded
element is a 512× 512 patch. Patches without any glaciers are filtered as in prior experiments. The
validation set is chosen at random from the same region as training. (b) The proportion of pixels
covered by clean ice glacier within each patch. Note that the test region is less densely covered by
glaciers.
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Figure 9: Results of a supplemental geographic generalization experiment using the multiclass model
of Section 4. Train and test sets are chosen at random and required to be geographically disjoint, as in
Figure 8a. Surprisingly, performance slightly increases in the test set. Evidently, glacier appearance
is relatively homogeneous across the area of study. The increase in performance can be explained by
the fact that, in each random geographic split, the test region had a lower glacier density, see Figure
8b.
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