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Abstract

Nonlinear dimensionality reduction methods like UMAP and t-SNE can help to organize high-dimensional
genomics data into manageable low-dimensional representations, like cell types or differentiation trajec-
tories. Such reductions can be powerful, but inevitably introduce distortion. A growing body of work
has demonstrated that this distortion can have serious consequences for downstream interpretation,
for example, suggesting clusters that do not exist in the original data. Motivated by these develop-
ments, we implemented a software package, distortions, which builds on state-of-the-art methods
for measuring local distortion and displays them in an intuitive and interactive way. Through case
studies on simulated and real data, we find that the visualizations can help flag fragmented neigh-
borhoods, support hyperparameter tuning, and enable method selection. We believe that this extra
layer of information will help practitioners use nonlinear dimensionality reduction methods more confi-
dently. The package documentation and notebooks reproducing all case studies are available online at
https://krisrs1128.github.io/distortions/site/.

1 Background

Nonlinear dimensionality reduction methods like UMAP and t-SNE are central data visualization tools in
modern biology. By projecting high-dimensional molecular profiles into lower dimensions, they reveal salient
biological variation across cells. These methods support diverse applications, including developmental tra-
jectory analysis, reference atlas construction, and disease characterization. They are included in widely used
data analysis workflows like Scanpy [62] and Seurat [55] and have been popular in practice, reflecting their
utility in modern biological research. Nonetheless, these methods have been controversial [5, 25, 32], because
they can introduce distortions and artefacts. These shortcomings include exaggerating cluster differences,
failing to capture density variation, and suggesting non-existent trajectories [10, 7, 60, 59, 17], which can
complicate and cast doubts on the biological interpretation of the observed patterns, potentially leading to
false discoveries.

Although alternative dimensionality reduction methods have been proposed that are arguably more prin-
cipled, their adoption remains limited. For this reason, recent research has focused on wrapper methods
designed to prevent artefacts and to support accurate embedding interpretation. These include improved
method initialization [22], adaptations for visualization faithfulness [38, 29], automatic hyperparameter selec-
tion [63, 26], and statistical tests to flag problematic embedding regions [63, 26]. These methods provide
valuable guidance for creating embedding visualizations. However, their static nature limits the amount of
contextual information they can display. Nonlinear embedding distortions are local, direction-dependent –
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stretching in some directions while contracting in others – and spatially variable, changing gradually from
point to point or abruptly between clusters. This complexity makes it difficult for static visualizations to faith-
fully represent distortion context without inducing information overload. Moreover, while existing diagnostic
methods can highlight problematic regions, the reasons underlying their selection (e.g., warped neighbor
distances) must remain hidden to avoid visual clutter. Further, existing methods vary in their capacity to
remove distortions or provide quantitative measures of the associated improvements.

To address these limitations, we introduce the distortions package, which uses interactive visualization
to display the sources of distortion in nonlinear embeddings. We adopt a mathematically rigorous definition
of local metric distortion, which is not tied to any particular data embedding algorithm [35], available in
our package as local distortions(). Our paper applies this measure to biological data for the first time.
To render the rich information returned by local distortions(), we introduce a version of the focus-
plus-context principle [15, 46, 11], supporting the progressive and user-controlled disclosure of sources of
distortion (like fragmented neighborhoods, defined below) based on user interaction, while maintaining the
overall query context. This approach helps users interactively flag algorithmic artefacts and answer questions
about them that are impossible to answer in full detail with static visualizations. Further, by introducing
a new method for interactively isometrizing an embedding, we make it possible to obtain a distortion-free
view of the underlying data’s intrinsic geometry in the vicinity of the region of interest.

In summary, this paper makes the following contributions:

1. Applying state-of-the-art measures of local distortion from the manifold learning literature [44, 34, 35]
to single-cell data for the first time. These methods reveal systematic differences in the interpretation of
embedding distances across cell types and highlight contiguous neighborhoods that become fragmented
during dimensionality reduction.

2. Demonstrating the practical utility of distortion measures in choosing between algorithms and hyper-
parameters. We find that these metrics support objective comparison of embedding results, and the
accompanying visualizations provide insight into qualitatively different types of distortion.

3. Developing interactive visualizations that highlight distorted regions and enable local corrections. We
introduce an isometrization method that allows users to interactively correct distortions locally within
regions of interest. Additional focus-plus-context approaches reveal distorted neighborhoods based on user
queries of summary visualizations.

We validate this functionality using data with known low-dimensional structure, then apply the package to
three single-cell datasets, showing the potential for improved biological interpretation and nonlinear embed-
ding method application. The package is hosted at https://pypi.org/project/distortions/ and documented
at https://krisrs1128.github.io/distortions/site/.

1.1 Distortion estimation

To set up our results, we briefly review distortion estimation. Embedding methods aim to learn a low-
dimensional, potentially nonlinear manifold on which the data lie. This manifold hypothesis is motivated by
the fact that only certain patterns of gene expression are plausible, due to regulatory constraints. Geomet-
rically, every point on the manifold can be mapped to a local coordinate system, called a chart. Biologically,
the local coordinates are directions of shifting activity of latent biological processes. An ideal embedding
method would perfectly recover these intrinsic charts, ensuring that distances on the biological manifold M
are reflected in the embedding. Such a distance-preserving manifold embedding is called an isometry.

Even in linear dimensionality reduction, distances require careful interpretation. For example, in prin-
cipal component analysis (PCA) plots, it is recommended that the axes be rescaled to reflect the relative
variances explained by each component [39]. This issue becomes more difficult in nonlinear settings, where
the interpretation of relative distances can vary locally across regions of the visualization [44]. Practical
algorithms inevitably introduce distortion, systematically dilating some directions while compressing oth-
ers. Depending on the direction of movement and the starting point, traveling the same distance in the
embedding space might correspond to different distances along the manifold. Though we may not be able
to avoid distortion, we can at least estimate it. Here we will call this estimate RMetric (Section 4.3 explains
this name) and can be represented in various equivalent ways, as shown in Fig 1. For instance, the function
local distortions() returns RMetric as a matrix H(i). The matrix H(i) gives a quantitative measure of
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Fig. 1: Interpreting the matricesH(i) generated by the RMetric algorithm. A. Three points on a hypothetical
manifold M. B. The three points from panel A arranged on one of the charts that defines M. A unit circle
with respect to the intrinsic metric around x(i) is overlaid. C. The embedding algorithm distorts the unit
circle from A. Though the distances and angles between samples have changed, the ratios of their distances
to the unit circle have not. Though the true distortion around y(i) is unknown, it can be estimated using
H(i) (blue ellipse). D. The same H(i) as panel C, but emphasizing the directions and degree of maximum
dilation and compression.

local distortion induced by an embedding method. A mathematical treatment is provided in the Methods
section, and we refer to [36] for an in-depth discussion.

We visually encode the local distortions H(i) with ellipses, displayed at each embedded point. Ellipses
with circular shapes reflect regions where the embedding approximates an isometry. Thus the size and
orientation of ellipses gives the principal directions of stretch/compression around point i, and the ellipse
itself can be seen as a polar plot of the stretch (or compression) associated to each direction from point i
(Fig 1). Specifically, larger ellipses appear when distances have been inflated and the major axes appear in
the direction of most extreme dilation. This approach generalizes Tissot’s indicatrix from cartography [23]
to high-dimensional embedding algorithms.

2 Results

2.1 Detecting cluster-specific differences in local metrics

This section gives two examples where local metric visualization highlights systematic differences in
embedding interpretation across clusters.

2.1.1 Gaussian mixtures with different variances We evaluate the recovery of intrinsic geometry in an

embedding of a mixture of two Gaussians. We sampled 500 points each from two components: N
(
µk, σ

2
kI2

)
where µA = (0, 0)

⊤
, µB = (30, 0)

⊤
, σA = 10, and σB = 1. The resulting mixture is shown in Fig 2A. We

applied UMAP with 50 neighbors and a minimum distance of 0.5. Despite the large differences in variance,
UMAP returned clusters with comparable sizes and densities (Fig 2B). We applied the RMetric algorithm
with a geometric graph Laplacian constructed from the 50-nearest neighbor graph and rescaling ϵ = 1.
The affinity kernel radius was set to the mean of the original data distances between neighbors on this
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Fig. 2: Interactive isometrization partially restores density differences in an Gaussian mixture embedding.
A. Original simulated data. Cluster B has smaller variance compared to Cluster A. B. Ellipse orientation
and sizes encode differences in local metrics in the UMAP embedding. Smaller ellipses mean that the same
distance in the embedding space corresponds to larger distances in the original data space. C. The isometriza-
tion interaction updates ellipse size and positions to reflect the local metric in the hovered-over region. This
partially restores the difference between cluster variances that were lost in the initial embedding. D. The
analogous isometrization when hovering over Cluster B (orange). Cluster B slightly shrinks, while Cluster
A (blue) remains at its original size. E. The normalized kernel similarities defining the contribution of each
H(i) to the H∗ used in the isometrization from panel B, as given in equation (4). F. The analog of panel E
for the mouse interaction in Panel D. G. The normalized kernel similarities describing the extent to which
each point is moved from its original position, as given in equation (5). The analog of panel G for the mouse
interaction in panel D.

graph. To prevent samples with outlying
(
λ
(i)
1 , λ

(i)
2

)
from obscuring variation among the remaining points,

we truncated λ(i) at a maximum value of 5; this affects 6 samples. To ensure that isometrization does not
uniformly contract or expand neighborhoods across the visualization, we further divided all H(i) by a scaling

factor 1
4N

∑
i′
∑

k,k′ H
(i′)
kk′ .

The resulting local metrics H(i) are overlaid as ellipses in Fig 2B-H. Fig 2B shows that Cluster A has
smaller ellipses than Cluster B, correctly reflecting the differences in cluster variance lost by the UMAP
embedding. Fig 3 shows the coordinates of the truncated λ(i) plotted against one another. The clear separa-
tion in singular values across clusters reinforces the qualitative differences in ellipse sizes from Fig 2A. Fig
2C-D show the isometrized versions of Fig 2B when hovering over samples in Cluster A and B, respectively.
These interactions recalculate the embedding locations and ellipse sizes to bring the local metrics H(i) near
the viewer’s mouse position closer to the identity I2, resulting in more circular ellipses. Thin grey lines con-
nect the isometrized and the original embedding coordinates. When hovering over Cluster A, the samples in
that cluster become spread further apart, while those in Cluster B are translated to the right but remain at
their original density. In contrast, when hovering over Cluster B, the samples in that cluster contract while
those in Cluster A remain close to their original positions.

More precisely, Fig 2C calculates a “local” metric H∗ based on the weights in Fig 2E, which are high
(darker) near the viewer’s mouse position. An exact isometrization with respect to the current region of

interest would update embedding coordinates y(i) to (H∗)
− 1

2 y(i) [44] across the entire visualization. We
instead restrict the transformation to areas close to the viewer’s current interaction region. Informally, the
darker points in Fig 2G are allowed to be updated more aggressively than the lighter points; the formal
transformation is detailed in equation (5). The analogs of Fig 2E and G for the interaction in Fig 2D are
given in Fig 2F and H.
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Fig. 3: Singular values λ
(i)
1 and λ

(i)
2 of the H(i) estimated in Figure 2. The larger

(
λ
(i)
1 , λ

(i)
2

)
in Cluster B

results in the larger ellipse sizes for that cluster, indicating that embedding distances for this cluster have
been “spread out” relative to original, pre-embedding distances. This effect is consistent with the data shown
in Figure 2A.

2.1.2 Local metrics vary across cell types in a PBMC atlas We next analyze peripheral mononuclear
blood cell (PBMC) single-cell genomics data (2683 cells, 1838 genes) from 10X Genomics, with default
processing from scanpy [50, 62], which included total sum scaling (TSS), a log (1 + x) transformation, and
highly variable gene filtering. We then applied UMAP (50 neighbors, minimum distance 0.5) to the PCA-
denoised data (top 40 components). Cell types were identified with Leiden clustering and canonical marker
genes CD79A and MS4A1 (B cells), FCER1A and CST3 (dendritic cells), GNLY and NKG7 (NK cells),
FCGR3A (monocytes), IGJ (plasma cells), and CD3D (T cells). To estimate the data’s intrinsic geometry,
we applied RMetric using the geometric graph Laplacian constructed from the 50-nearest neighbor graph
and rescaling ϵ = 5. The affinity kernel radius was set to three times the mean of the original data distances
within this graph. To prevent a few highly skewed ellipses from influencing the remaining points, we truncated

the singular values
(
λ
(i)
1 , λ

(i)
2

)
from above at 2.5. We divide by the same 1

4N

∑
i′
∑

k,k′ H
(i′)
kk′ scaling factor

as in Gaussian mixture example above.

The resulting ellipse-enriched embedding Fig 4A reveals systematic metric differences across cell types.
T cells ellipses are oriented with major axes in the northwest/southeast direction, suggesting that distances
orthogonal to this direction compressed in the embedding. In contrast, dendritic cells are generally oriented in
the southwest/northeast direction, suggesting greater spread away from the monocytes than the embedding

alone indicates. Fig 4D displays the truncated and rescaled singular values
(
λ
(i)
1 , λ

(i)
2

)
. Points closer to

the x-axis correspond to ellipses that are more eccentric than those near the center of the plot. Cell types
differ systematically in this view as well, reinforcing our conclusion that local metrics are associated with
cell type. The panel also draws attention to the high condition numbers among subsets of the T and NK
cells. In contrast, many monocytes lie in the middle of the panel; these are the more circular embeddings
in Fig 4A. Further, zooming into Fig 4D, Appendix Fig A1 reveals a second monocyte subset with smaller
singular values. This pattern matches the bimodality in monocyte size distribution in Figure 4A. The UMAP
embedding appears to have collapsed the two monocyte subsets, compressing distances for smaller points
and dilating them for larger points. Though changing the visual markers from circles to ellipses is a small
difference, the associated local metrics reveals valuable context about how UMAP warps intrinsic geometry
across the visualization.

Fig 4 illustrates isometrizations for two cell types. Fig 4B - C show the embedding after placing the mouse
over the cluster of NK cells (Fig 4B) and dendritic cells (Fig 4C), respectively. In both panels, the solid ellipses
represent the updated embedding, while transparent ellipses and thin lines indicate the original positions
and metrics. Isometrization over the NK cells expands the main NK cluster and increases the distance from
the main cluster and the subset bridging T cells and NK cells, consistent with the northwest/southeast
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Fig. 4: Isometrization of the PBMC UMAP embeddings. A. Ellipse orientation and sizes vary systematically
across regions of the embedding, indicating differences in local metrics within and between cell types. B. An
updated version of panel A when the mouse is positioned over a subset of NK cells. Transparent ellipses
mark the cells’ original positions, and lines connect the original and updated locations. C. Isometrization

when hovering over dendritic cells. D. The windsorized singular values λ
(i)
1 , λ

(i)
2 associated with H(i) across

cells. Ellipse size is determined by λ
(i)
1 λ

(i)
2 and eccentricity by λ

(i)
1 /λ

(i)
2 . A version that zooms into the region

near the origin is given in Appendix Fig A1. E. The normalized kernel similarities defining the local metric
H∗ (equation (4)) when the mouse is placed as in panel C. F. The analog of panel E when the mouse is
placed as in panel G. The normalized kernel similarities defining the region of transformation (equation (5))
when the mouse is placed as in panel C. H. The analog of panel G when the mouse is placed as in panel D.

orientation of ellipses in Fig 4A. Figs 4E - F display the normalized kernel similarities used to define the local
metric H∗ and the regions of transformation. The interaction over the dendritic cells (Fig 4C) increases the
spread of cells close to the mouse position. Monocyte orientations are shifted slightly, but other cell types
remain largely unchanged. Together, this suggests that the distortion of NK cells is more severe than that
of dendritic cells in this choice of UMAP embedding.

2.2 Identifying fragmented neighborhoods

There is emerging evidence that nonlinear dimensionality reduction methods can introduce embedding
discontinuities [26], meaning that some points that are nearby in the original space end up being embedded
as far from one another as those that are originally very different. In particular, points that lie in the same
neighborhood in the original space may be fragmented into different embedding regions, complicating the
interpretation of between-cluster relationships. To address this, distortions provides metrics for quantifying
fragmentation at the neighborhood and pair levels, based on the relationship between observed vs. embedding
distances among nearby points in the original data space, as detailed in the Methods (“Identifying fragmented
neighborhoods”). A focus-plus-context visualization approach [15, 24, 46] then allows viewer interactions to
progressively reveal the extent of fragmentation within different embedding regions. We provide examples
below.
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2.2.1 Mammoth skeleton We evaluate this strategy on UMAP embeddings of a three-dimensional mam-
moth skeleton point cloud (Fig 5A) generated by the Smithsonian Museums in an effort to digitize their
collection [40]. This dataset has been used to study the artifacts introduced by UMAP [7]. It has the advan-
tage of being directly visualizable in three dimensions (Fig 5A). Further, the data exhibit patterns at both
global and local scales. For example, a successful dimensionality reduction method must preserve global
relationships, like the relative positions of tusk, skull, and legs, and also fine-scale differences, like the dis-
tinction between bones in the rib cage. We applied UMAP (50 neighbors, minimum distance 0.5) to embed
the 10,000 samples available in these data. The RMetric algorithm was applied using a geometric graph
Laplacian constructed from the 50-nearest neighbor graph and a rescaling ϵ = 5. The affinity kernel radius
was set to 3 times the mean of the original data distances between neighbors on this graph. The resulting
H(i) are directly encoded using ellipse dimensions without any post-processing. To identify distorted pairs,
we used the boxplot display with outlier threshold set to 10×IQR. To identify distorted neighborhoods, we
applied the bin-based screening metric (see Methods) with κ = 0.1 and σ = 3, requiring that at least 10%
of neighbor distances be poorly preserved. This flags 425 potentially fragmented neighborhoods.

Fig 5B shows the boxplot widget overlaid on the UMAP. Reassuringly, the median embedding distances
increase monotonically as the distances in the original space increase. However, within each bin, the dis-
tribution of embedding distances is skewed, especially for small distances in the original data space. Many
pairs of points within these bins appear much further apart in the embedding than expected. In the current
display, the viewer has selected the outliers within the three leftmost bins, highlighted in pink. The corre-
sponding pairs are linked together in the main embedding view. These pairs include points on the left and
right shoulders of the mammoth. These points are close to one another in three dimensions, but have been
spread apart by the embedding. UMAP appears to reflect geodesic rather than Euclidean distance, effec-
tively “flattening” the mammoth skeleton. In addition to the left and right shoulder pairs, the highlighted
outliers include neighbors where one point lies on the last right-side rib bones and the other on the right
side of the pelvis. UMAP embeds these adjacent bones further apart than appropriate, another distortion of
the original structure.

The fragmented neighborhoods displays in Fig 5C confirms these findings. For example, the flattening
of the shoulder is evident in the chain of fragmented neighborhoods in this region. Points further along the
rib on the right and pelvis are also highlighted, as in the boxplot view. In this case, the viewer’s mouse lies
over the right shoulder of the mammoth. Unlike the boxplot view, this allows us to view all the neighbors
of distorted points near the mouse, showing the neighbors along the chest and arm whose distances are not
outlying in the boxplot. This view also reveals more isolated fragmentations, for example on the skull, arms,
and tail. Hovering over these points shows that a large fraction of their neighbors have also been spread
apart (e.g., left and right hand sides of the skull), even if their absolute embedding distances are not large
enough to stand out in the boxplot interactions.

2.2.2 PBMC gene expression We next identify distorted embedding pairs in the PBMC example. The
boxplot widget again reveals outliers when the original distances are small (Fig 5D). The viewer has brushed
the top outliers within the two leftmost bins. This selection highlights pairs of T cells and monocytes that
are close despite the apparent embedding separation. This view distinguishes between two regions with
distorted pairs within the T cell cluster. Unlike the NK cells, which visibly cluster into two subtypes, these
two subtypes of distorted T cells do not stand out from the main T cell cluster. Nonetheless, both subtypes
are near the boundary of the overall cluster. This suggests that in high dimensions, the T cell cluster may be
curved in a way that allows these subgroup to be closer to the monocytes than is visible in the embedding.

We next identify fragmented neighborhoods using the bin-based strategy (L = 10, κ = 0.2, σ = 2
threshold), resulting in 72 cells with fragmented neighborhoods. Fig 5E highlights fragmented NK cell neigh-
borhoods that are separated from the main NK cluster. These distorted neighborhoods are centered on cells
that are connected to both T cells and monocytes. These cells appear to bridge several cell types. Fig 5F
shows a different subgroup of distorted NK cells. These cells lie along the NK cluster periphery, with many
links to monocytes but few to T cells. This suggests that the sharp separation between the NK cells and
monocytes may be an embedding artifact. A subset of dendritic cell are flagged as distorted, and hovering
over them shows that they are neighbors with distant monocytes. Two subtypes of T cells are flagged as
distorted; these largely overlap with those highlighted by the boxplot visualization in Fig 5D. Only four
monocytes with fragmented neighborhoods are flagged, suggesting that this cluster does not suffer from
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Fig. 5: Fragmented neighborhoods and links. A. The original mammoth point cloud, before applying any
dimensionality reduction. B. Pairs with poorly preserved distances in the mammoth data. The viewer has
selected pairs of points that are close to one another in the original space, but which are far apart in the
embedding. C. Analogous poorly fragmented neighborhoods defined using the quantile smoothing criteria.
D. Pairs with poorly preserved distances in the PBMC data. Distances between NK cells, T cells, and
monocytes have been exaggerated by the UMAP embedding. E. A subgroup of NK cells with poorly preserved
neighborhoods in the PBMC data. Cells close to the viewer’s mouse interaction have neighbors spread across
T cells, NK cells, and monocytes. F. A different subgroup of NK cells with fragmented neighborhoods. These
cells often have neighbors lying on the far boundary of monocytes.

fragmentation as severely as the others. Interactive distortion visualization can reveal different degrees and
types of distortion across and within cell types.

2.3 Guiding method selection and tuning

In addition to interpreting individual embedding visualizations, distortion metrics can be used to com-
pare different embedding methods and hyperparameter choices. They give a quantitative way to judge how
well competing embeddings preserve the original data’s structure. Further, the interactivity implemented
in distortions makes it possible to explore why distortions arise, without overwhelming viewers with all
contextual information at once. In this section we use three example datasets to illustrate how distortion
visualization can guide method selection and tuning.

2.3.1 Clarifying how hyperparameter choice impacts distortion Hyperparameters in nonlinear
dimensionality reduction methods like UMAP and t-SNE can substantially influence results [22, 3, 60]. Dis-
tortion visualization can reveal the trade-offs imposed by specific choices. We evaluate this using the hydra
cellular differentiation data from [53]. This study used single-cell RNA sequencing to measure gene expres-
sion of a developing hydra polyp, an organism notable for its regenerative ability. Fig 1 of their paper is a
t-SNE that clarifies the cellular composition of hydra tissue as well as the differentiation paths from stem
and progenitor cells to specialized cell types. To create a setting with greater statistical instability and where
hyperparameters may play a more important role, we take a random sample of 2000 of the original 24,985
cells. As in the analysis of the PBMC data, we apply TSS normalization, a log (1 + x) transformation, and
filter to the top 1000 highly variable genes.
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We apply t-SNE to the PCA denoised data (30 components) with perplexity values of either 80 or 500.
To estimate distortion we use the RMetric algorithm with a geometric graph Laplacian with 50 nearest
neighbors and a rescaling ϵ = 5. The radius for the affinity kernel was set to three times the average
original data distance in the 50-nearest neighbor graph. Both the boxplot widget and the neighborhood
fragmentation visualizations suggest qualitatively different types of distortion across the two perplexity
settings. At a perplexiy of 80, the fragmented neighborhoods occur in the gaps between cell type clusters
(Fig 6A). Hovering over these neighborhoods reveals connections to adjacent cell types (Fig 6C), suggesting
that some transitions in gene expression programs between cell types may in fact be more gradual. These
blurrier transitions are captured at a perplexity of 500 (Fig 6B). However, at this hyperparameter value,
many fragmented neighborhoods appear along the top and bottom boundaries of the embedding. Interacting
with the display reveals that at this hyperparameter choice, the embedding fails to preserve distances between
peripheral neighborhoods. For example, the viewer’s selection in Fig 6D highlights neighbors that have been
split across opposite sides of the visualization.

This reveals a basic trade-off: higher perplexity better reflects distances between main cell types but arbi-
trarily places rarer types, while lower perplexity correctly places these rare clusters correctly at the cost of
inflating distances between common cell types. This additional context gives confidence in the conclusions
drawn within specific regions of separate visualizations. These conclusions can still be reliable even when no
single view preserves all relevant properties of the original high-dimensional data. Further, though the quali-
tative differences between hyperparameter choices would be difficult to obtain through manual inspection of
the distances within the embedding output, the interactive display allows the differences to pop out naturally.

2.3.2 Comparing initialization strategies using distortion metrics Nonlinear dimensionality reduc-
tion methods can be sensitive to initialization strategies. Indeed, most single cell analysis packages use a
preliminary dimensionality reduction step, like PCA or Laplacian eigenmaps [1], to initialize the optimization
[22, 48]. We next study whether distortion metrics can detect issues arising due to poor initialization. To this
end, we rerun the UMAP analysis of the PBMC data and consider a random, rather than the default spec-
tral, initialization. All other dimensionality reduction and visualization hyperparameters remain as before.
Fig 7 presents the results. Compared to Fig 4A, Fig 7A separates the NK cells into distinct groups falling
on opposite sides of a main cluster of dendritic cells and monocytes. Brushing outlying neighbor distance
pairs in the boxplot in Fig 7C highlights the fact that these two groups share many neighbors, and that the
gap is artificial: many NK cells are neighbors with T cells despite lying on opposite sides of the plot. This
suggests that the spectral initialization, which places T cells and NK cells adjacent to one another, better
preserves their neighborhood relationships.

Fig 7D displays the fragmented neighborhoods, analogous to Fig 5E. Though some T-cell-adjacent NK
cells had been flagged in the spectrally-initialized embedding, a larger number are distorted in the random
initialization, including many with neighbors in the monocyte cluster. Further, the reduced y-axis range in
Fig 7B relative to Fig 4D draws attention the greater eccentricity of ellipses in the random initialization,
indicating larger distortion of local metrics. Importantly, none of these issues with the random initialization
are detectable from the embedding coordinates alone. Both ellipse eccentricity and interaction with distortion
summary metrics add context for understanding the importance of effective UMAP initialization.

2.3.3 Analyzing density preservation in a Caenorhabditis elegans cell atlas We applied our pack-
age to a single-cell atlas of Caenorhabditis elegans development [41], originally gathered to characterize the
gene programs activated during different phases of embryogenesis in the C. elegans model system. These
data include measurements on 86,024 cells, of which 93% have been manually annotated with cell types by
the authors. Nonlinear embeddings applied to this dataset are known to obscure meaningful differences in
local density, causing biologically meaningful cell types to appear sparser or denser than appropriate [38].
Therefore, we compared UMAP with the density-preserving algorithm DensMAP and use distortions to
evaluate the improvement in local metric preservation. By utilizing our package’s distortion summaries, we
can highlight neighborhoods that are artificially fragmented in the embeddings and quantify the reduction
in distortion made possible through the DensMAP algorithm.

Before applying either method, we applied a PCA denoising step which reduced the data to 100 dimen-
sions. We applied both UMAP and DensMAP with 10 neighbors and a minimum distance of 0.5. To simplify
the distortion analysis, we considered a random sample of 5000 cell embeddings from each of 10 randomly
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chosen cell types (arcade, glia, pharyngeal neuron, intestinal and rectal muscle, M, excretory duct and pore,
hypodermis, intestine, and rectal gland). This restriction is analogous to focusing on a subset of cell types
when testing whether putative cell types are truly distinct or a visualization artifact [54, 12]. We used RMet-
ric to estimate local metric distortion using a geometric graph Laplacian based on the 10-nearest neighbor
graph and affinity kernel radius set to three times the average original neighbor distance in this graph. To
identify distorted neighborhoods associated with each method, we apply the the bin-based strategy with
L = 10, κ = 0.4, σ = 3 to flag points where a fraction of at least 40% of neighbors have embedding distance
at least 3× IQR away from the median within the corresponding bin of original distances.

Fig 8A-B shows the resulting fragmented neighborhoods. In both embeddings, the degree of fragmentation
varies by cell type. For example, pharyngeal neuron neighborhoods are often fragmented by both algorithms,
while few fragmented neighborhoods are centered on hypodermis cells. Qualitatively, the DensMAP embed-
ding is less compressed into tight clusters than UMAP, suggesting that UMAP may artificially inflate the
embedding space densities. Despite using the same graphical encoding scales, the UMAP ellipses also appear
to be less uniformly sized. The more compact “hair” plots reinforce this conclusion (Fig 8D-E). Each seg-
ment corresponds to one ellipse in panels A - B. The segments are oriented along the minor axis of the

ellipses, and their lengths encode condition number λ
(i)
1 /λ

(i)
2 . We note that these hair-like graphical marks

can be substituted for ellipses in all visualizations and interactions discussed above, including the boxplot
and isometrization displays.

Further, the distortion metrics provide quantitative support of DensMAP’s ability to preserve intrinsic
geometric information. For example, the histogram in Fig 8C shows that the UMAP resulted in systematically
larger metric condition numbers, suggesting more systematic metric distortion. Further, Fig 8F shows that
across choices of κ, the DensMAP results in fewer fragmented neighborhoods than UMAP. In this case, the
distortion metrics led to a stable conclusion across hyperparameters. However, more generally, whether a
neighborhood is flagged as fragmented can be dependent on the choices (L, κ, σ), and local metric estimates
like λ(i) can depend on the graph Laplacian neighborhood and radius hyperparameter choices. We have
followed the recommendations discussed in [44], but it is worth considering that the estimated degree of
distortion can be dependent on hyperparameter choices.

2.4 Software architecture and extensibility

Considering that no single definition of distortion exists for nonlinear dimensionality reduction, the
distortions package adopts a “loosely coupled” design to ensure extensibility [14]. Each visualization
accepts viewer-provided specifications of fragmented neighborhoods or links. Alternative distortion metrics
can be implemented in independent functions as long as their formats are consistent. Similarly, visualizations
can composed from viewer-specified graphical marks and interactions, similar in spirit to ggplot2 [61] and
altair [57]. For example, consider the interactions with fragmented neighborhoods of the PBMC data in Fig
5E - F. If the distorted neighborhoods are stored in a dictionary N, then the interactive plot can be created
with

dplot(embedding)\

.mapping(x="embedding_0", y="embedding_1", color="cell_type")\

.geom_ellipse()\

.inter_edge_link(N=N)

and the result will appear in a jupyter notebook cell.

This loose coupling also simplifies the application of our visualization to other distortion summarization
approaches. We illustrate this by using the scDEED algorithm [63] to flag dubious cells in a t-SNE embedding
of the PBMC data (Fig 9A). This figure was generated by applying the default scDEED workflow to the
PBMC data, adding local metrics H(i) to the resulting embeddings, and replacing embedding and N in the
call with the corresponding scDEED output. The resulting visualization is consistent with expectations –
by hovering the mouse close to the scDEED flagged cells, we see the these cells often have neighbors in the
original space that are placed far apart in the embedding space (Fig 9B). We note that no such interactive
display has previously been available for output from the scDEED package.

10

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 26, 2025. ; https://doi.org/10.1101/2025.08.21.671523doi: bioRxiv preprint 

https://doi.org/10.1101/2025.08.21.671523
http://creativecommons.org/licenses/by/4.0/


541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594

We can also customize the graphical marks, styling, and labels in a format familiar to to ggplot2 and
altair users. For example, the visualization from the code block above can be customized using

dplot(embedding, width=440, height=340)\ # custom plot size

.mapping(x="embedding_0", y="embedding_1", color="cell_type")\

.geom_ellipse(radiusMax=15, radiusMin=1)\ # custom point size

.inter_edge_link(N=N, threshold=.1, strokeWidth=0.4)\ # narrower interaction window

.scale_color(legendTextSize=15)\ # increase legend size

.labs(x="UMAP 1", y="UMAP 2") # custom labels

Further, we can switch from the fragmented neighborhood to the boxplot interaction (Fig 5D) by simply
substituting the inter edge link call with inter boxplot. This modular approach also enables the spec-
ification of new graphical marks and interactivity. For example, for large datasets, ellipses can be replaced
with line segments, as in Fig 8D - E. This more compact encoding of local distortions is accomplished by
substituting the geom ellipse mark with geom hair.

3 Summary and conclusions

Nonlinear embedding visualizations have been essential to progress in high-throughput biology, offering
visual overviews that have guided advances in diverse applications like cell atlas construction [9, 45], cell
differentiation trajectories [4, 13], and functional diversity mapping in metagenomes [51]. However, their
potential for misinterpretation is well-documented [10, 60, 5, 22]. The community has made significant
progress in characterizing and minimizing distortion [38, 63, 26, 29, 18], and the distortions package offers
an interactive visualization toolbox that draws from manifold learning concepts and complements these
advances.

Moderate distortions are accurately characterized by the RMetric algorithm, whose results can be graph-
ically encoded in ellipse or hair plots, while more severe distortions are flagged via fragmented neighborhood
plots. RMetric emphasizes how the intrinsic geometry is warped across different regions of the embedding
space, alerting analysts to failures in density preservation and compression/dilation in certain embedding
directions (Fig 2). Further, by flagging fragmented neighborhoods, we could identify clusters that are more
closely related in the original data space than the embedding suggests. In the PBMC fragmentation exam-
ple (Fig 5D-F), we found that a subset of T cells had many neighbors coming from the monocyte cluster,
despite these clusters appearing on the opposite sides of the embedding visualization. Further, interaction
with distortion metrics highlighted trade-offs between the types of distortion introduced by different hyper-
parameter choices (Fig 6). Finally, local isometrization offers the scientist a kind of magnifying glass into the
local geometry of the original data, making it possible to zoom in and query low-level sample relationships
that can be lost in global reductions.

We acknowledge limitations in our approach. For instance, our summaries depend on viewer-specified
hyperparameters, like the number of bins L or neighborhood fraction κ in the bin-based fragmented neigh-
borhood definition Regarding distortion, while the local distortion RMetric is a well-defined differential
geometric quantity, measuring distortions at larger scales is open to subjective preferences. For example, the
fragmented neighborhood definition relies on distances in the original high-dimensional space, while alterna-
tives could consider geodesic distances along the original manifold embedded in the high-dimensional spaces.
Pairs of points could be flagged by outlierness, or by constructing a neighborhood graph in the embedding
space and comparing the two.

Future work should ensure that a variety of long-range distortion measures are covered. Our modular
software architecture will support straightforward extensions to new definitions and visualization layers. We
expect that continued effort in this space will result in visualization techniques that can allow analysts to gain
valuable insights from exploratory overviews while contextualizing their inherent limitations. While nonlinear
dimensionality reduction methods cannot fully preserve all metric properties from the original data space,
these exploratory views can guide more appropriate interpretation, allowing scientists to communicate results
confidently and avoid the pitfalls of false discoveries due to algorithmic artefacts. By overlaying quantitative
summaries of the distortion introduced by embedding algorithms, the distortions package aids researcher
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intuition and facilitates critical evaluation of the embedding visualizations that have become standard in
modern biological analysis.

4 Methods

4.1 Notation

In the following, matrices will be denoted in bold uppercase letters, e.g.A, vectors in bold lowercase, e.g. v,
vector and matrix elements by additional subscripts, e.g.Aii′ , and other scalars by unbolded Latin and Greek
letters. The index i will be reserved for denoting the ith data point, and it will be used as a superscript on
vectors and matrices associated with it. Thus, the original data is x(1), . . .x(i), . . .x(n) ∈ RD, where n is the
sample size and D is the dimension of the data. The embedded data points are denoted y(1), . . . . . .y(n) ∈ Rd,
where d ≤ D is the embedding dimension. Here we formally define the variables that underlie the algorithms
in the distortions package. For more background on the statistical and mathematical basis of embedding
algorithms, the reader is referred to the [35] review.

4.2 Neighborhood graph

Embedding algorithms such as UMAP [33], Isomap [56], t-SNE [30], DiffusionMaps [8], or LTSA [58]
each output different embeddings y(1:n), but they all start from the same data representation, which is
the neighborhood graph. Specifically, the first step in embedding data as well as in analyzing an embedding
is to find neighbors of each data point x(i). This leads to the construction of the neighborhood graph as
follows. Every data point x(i) represents a node in this graph, and two nodes are connected by an edge if
their corresponding data points are neighbors. We use Ni to denote the neighbors of x(i) and ki = |Ni| be
the number of neighbors of x(i). This graph, with suitable weights that summarize the local geometric and
topological information in the data, is the typical input to a nonlinear dimension reduction algorithm.

There are two usual ways to define neighbors. In the k-nearest neighbor (k-NN) graph, x(i′) is the neighbor
of x(i) iff x(i′) is among the closest k points to x(i). In a radius-neighbor graph, x(i′) is a neighbor of x(i)

iff ||x(i) − x(i′)||≤ r, with r a parameter that defines the neighborhood scale. The k-NN graph has many
computational advantages since it is connected for any k > 1 and each node has between k and 2k − 1
neighbors (including itself). Many software packages are available to construct (approximate) k-NN graphs
fast for large data [16, 6, 37].

The distances between neighbors are stored in the distance matrix A, with Aii′ being the distance
||x(i) − x(i′)|| if x(i′) ∈ Ni, and infinity if x(i′) is not a neighbor of x(i). For biological data analysis,
specialized distance functions can replace the generic Euclidean distance [27, 21, 64, 19]. From A, another
data representation is calculated, in the form of an n×n matrix of weights that are decreasing with distances.
This is called the similarity matrix. The weights are given by a kernel function [52], for example, the Gaussian
kernel, defined as

Kii′ :=

exp

(
− ||x(i)−x(i′)||2

h2

)
, x(i′) ∈ Ni,

0, otherwise.
(1)

In the above, h, the kernel width, is another hyperparameter that must be tuned. Note that, even if Ni

would trivially contain all the data points, the similarity Kii′ would be vanishingly small for faraway data
points. Therefore, (1) effectively defines a radius-neighbor graph with r ∝ h. Hence, a rule of thumb is to
select r to be a small multiple of h (e.g., r ≈ 3h–10h) [35]. 1

The neighborhood graph augmented with the distance matrix A or with similarity matrix K has many
uses:

1. As stated above, it serves as a starting point for embedding algorithms.
2. In this paper, K is used to calculate the local distortion.
3. In this paper, A is used to detect the fragmented neighborhoods.

1Sometimes, the simple similarity

Kii′ :=

{
1, x(i′) ∈ Ni,

0, otherwise
(2)

is used. This similarity matrix K is the unweighted adjacency matrix of the neighborhood graph, and completely ignores the distances.
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4. Neighborhood graphs are also used in estimating the intrinsic dimension, in Topological Data Analysis,
namely in finding the loops and hollows in the data, as well as in other Geometric Data Analysis tasks.

While most embedding algorithms can take as input both types of neighborhood graphs (or resulting dis-
tance or similarity matrices), the embeddings obtained will be influenced by the type of graph and by the
hyperparameter value used with it. For other uses, one type of graph or another may be optimal. In par-
ticular, for the purpose of estimating distortion, it is necessary to use the radius-neighbor graph, as this
guarantees the distortion estimated is unbiased.

4.3 Distortion estimation with the Dual Pushforward Riemannian Metric

The distortion estimation function local distortions() implements the algorithm introduced by [43].
Given an embedding y(1:n) of data x(1:n) with similarity matrix K computed from radius-neighbor graph,

local distortions() outputs for each embedding point y(i) a d× d matrix V(i) whose column v
(i)
1 , . . .v

(i)
d

represent the principal directions of distortion at data point i. The stretch in direction v
(i)
j is given by λ

(i)
j .

When λ
(i)
j = 1 there is no stretch, for λ

(i)
j > 1 the embedding stretches the data in direction v

(i)
j , and

for 0 < λ
(i)
j < 1 the embedding shrinks the data along this direction. Thus, the principal directions are

orthogonal directions in the embedding where the algorithm induces pure stretch. Intuitively, the values λ
(i)
j

represents the local unit of length in direction v
(i)
j .

The principal directions and stretch values result from the eigendecomposition of the symmetric, pos-

itive definite matrix H(i) = V(i) diag{λ(i)
1 , . . . λ

(i)
m }V(i⊤) For an embedding with no distortion, namely an

isometric embedding, H(i) = Id the unit matrix.

The local correction at y(i) is the inverse G(i) of H(i); in techical terms G(i) is known as the embed-
ding (push-forward) Riemannian metric. Obviously, the eigendecomposition of G(i) is given by V(i) and

1/λ
(i)
1 , . . . 1/λ

(i)
m . Thus, to correct the distortion in direction y(i′)−y(i), one calculates G(i)(y(i′)−y(i)). The

orientation and length of this vector with origin in y(i) are the corrected direction and distance to nearby
point y′.

Hence, for any data embedding, it is sufficient to estimate, at all points y(1:n), the matrices G(1:n), which
represent the auxiliary information enabling correct distance computations, as if working with the original
data, even though the embedding may not have preserved them. The same G(1:n) can be used to preserve not
only geodesic distances but also other geometric quantities such as angles between curves in M or volumes
of subsets of M. Further uses of the distortion and correction matrices are described in [35, 43, 20], and here
we present a corrected visulalization based on G(i).

4.4 Computational complexity of RMetric

The complexity of the RMetric computation is dominated by the construction of the neighborhood
graph. Since this graph is already computed for the purpose of embedding the data, we will only consider
the overhead. Obtaining the similarity K involves a fixed set of operations per graph edge (i.e. calculating
the kernel value), hence order m operations total, where m is the number of edges in the neighborhood
graph. Further computations also are proportional to m. Computing the RMetric at point i requires ∼ kid

2

operations, where ki is, as above, the number of neighbors of i. Hence, obtaining the RMetric at all points
requires ∼ md2 operations.2 Further eigendecompositions and inversion of H(i) are order d3 per data point,
hence nd3 total.

Since the optimal neighborhood graph is a sparse graph (since it should only capture distance to nearby
points and ignore the distances to far-away points), m is much smaller than the maximum value n(n− 1)/2.
In practice, on large data sets, we have always found that computing the RMetric is much faster than
computing the embedding itself. The same is true for the isometrization algorithm, in which the overhead
after RMetric computation is to apply a simple transformation to every embedded point.

2Since
∑

i ki = 2m.
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4.5 Selecting the hyperparameter h

We recommend [35] for a tutorial on the choice of parameters k and/or h (with r being a small multiple
of h). An automatic method for choosing these parameters, reminiscent of cross-validation, was introduced
by [43] and can be found in the megaman package https://mmp2.github.io/megaman/.

As a general rule of thumb, if a neighborhood graph results in a good embedding, then the neighborhood
scale is the appropriate one for the RMetric as well. Hence, if the embedding is obtained via a radius-neighbor
graph, then the same graph, or same K matrix should be used for local distortions(). If a k-NN graph
was used, then we recommend selecting h so that the row sums of K average k, the neighborhood parameter
of the k-NN graph.

4.6 Identifying fragmented neighborhoods

To compare distances across the original and embedding space, let:

D := ∪N
i=1

{(
∥x(i) − x(i′)∥, ∥y(i) − y(i′)∥

)
∈ R2 for i′ ∈ Ni

}
The distortions package supports two strategies for flagging neighbors with poorly preserved distances,
which form the basis for defining fragmented neighborhoods.

Bin-based strategy

This approach partitions the original space distances into L evenly-sized bins and detects outliers in the
embedding distances within each bin. Let πO (D) and πE (D) extract the original and embedding distances
from D, respectively. With dmin = inf πO (D) and dmax = supπO (D), set the binwidth w = 1

L (dmax − dmin)
and partition the original data distances into intervals Il = [dmin + w (l − 1) , dmin + wl). The embedding
distances within bin l are,

Dl := {d ∈ D : πO (d) ∈ Il}

where we have abused notation and applied the projection πO to an individual distance tuple d. For each
bin, we compute the interquartile range of associated embedding distances,

IQRl = Q0.75 (πE (Dl))−Q0.25 (πE (Dl))

where Qα extracts the α-quantile. A distance tuple d ∈ D is considered outlying if,

πE (d) /∈ [Q0.5 (πE (Dl))− σIQRl, Q0.5 (πE (Dl)) + σIQRl]

where σ is controls the outlier threshold. Note that neighborhood distances can be considered outlying for
two qualitatively different reasons. The embedding distance may be either too large, where truly neighboring
points may be artificially spread apart. This is labeled O+

l in Fig 10. Alternatively, they may be too small,
where distant points are inappropriately collapsed on top of one another (O−

l in Fig 10). All bin-l outliers
are collected into the set Ol = O−

l ∪ O+
l .

We define fragmented neighborhoods using the outlier sets Ol. We consider y(i) to be the center of a
fragmented neighborhood if,∣∣∣{i′ : (∥x(i) − x(i′)∥, ∥y(i) − y(i′)∥

)
∈ ∪Ol

}
∩Ni

∣∣∣
|Ni|

≥ κ, (3)

that is, if at least a fraction κ of the distances to its neighbors belong to at least one outlier set Ol. This
procedure is illustrated graphically in Fig 10.

Window-based strategy

The window-based strategy parallels the bin-based approach but uses running windows centered at each
point. For each d0 ∈ D, we define a window Dwin of the ∆ nearest points with respect to πO (d0). Within
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each window, we compute the interquartile range (IQR) of the embedding distances and flag d ∈ D as an
outlier if its embedding distance is more than σ IQRs from the median embedding distance in the window,

πE(d) /∈ [Q0.5(πE(Dwin(d0)))− σIQR(d0), Q0.5(πE(Dwin(d0))) + σIQR(d0)]

where IQR(d) is the interquartile range of πE(Dwin(d)). As with the bin-based strategy, a neighborhood
is fragmented if at least a fraction κ of its neighbor pairs are flagged as outliers. This approach leads to
smoother IQR boundaries compared to the bin-based approach, but is more computationally involved.

4.7 Focus-plus-context visual interaction

Adding distortion information to standard nonlinear embedding visualizations is challenging because the
additional context can overwhelm an already complex visualization, making them even more difficult to
understand. The distortions package addresses this challenge through the focus-plus-context principle
[15, 24, 46]. This approach displays distortion information locally (“focus”) while maintaining the broader
visual overview (“context”). The region within which to display additional information is set by the viewer’s
interactions. We implement three forms of focus-plus-context interactivity, adapted to visualize fragmented
neighborhoods, distance preservation, and local isometries, respectively.

4.7.1 Mouseover interactions to reveal fragmented neighborhoods This visualization supplements
the original embedding overview by highlighting fragmented neighborhoods when their centers are hovered
over. The centers may be defined using either the bin-based or window-based strategies described above.
Before interaction, the fragmented neighborhood centers are highlighted with a distinctive stroke and color,
guiding attention to regions of the embedding that are enriched with fragmentation. When the viewer’s
mouse is moved to a location m ∈ R2, all fragmented neighborhoods with centers within a distance δ of m
are highlighted. Specifically, an edge is drawn between y ∈ R2 and y′ ∈ R2 if:

1. ∥y −m∥ ≤ δ.
2. y satisfies the fragmented neigorhood criterion (Equation 3).
3. y′ is one of the top k neighbors of y in the original data space.

The neighbors y′ are highlighted when their corresponding edge links are visible. The hyperparameters δ
and k must be specified by the viewer. We default to the k used in the original embedding. Since the
neighborhoods are fragmented, the associated edge links typically span large regions of the embedding space,
making interactive updates necessary to prevent occlusion from overlapping edges.

4.7.2 Brush interactions to visualize distance preservation The focus-plus-context principle sup-
ports visualization of individual edges with poorly preserved distances, rather than entire neighborhoods. A
brushable widget is placed alongside the main embedding visualization and displays boxplots that compare
binned distances in the original data space (x-axis) with the distances in the embedding space (y-axis). This
boxplot overview builds on the static approach of [22]. Boxplot whiskers are capped at σ times the IQR, with
outliers beyond this range drawn as distinct points. The number of bins and σ are user-specified hyperpa-
rameters. As the brush is moved, the embedding visualization updates to highlight edges between neighbors
with brushed and outlying embedding distances. The coordinated display allows viewers to focus on specific
distorted neighbor pairs within the context given by the overview boxplots.

4.7.3 Mouseover interactions to update local isometries The distortions package supports inter-
actions that provide an intuitive understanding of local metric differences induced by the embedding. In
this view, the mouse’s position is used to isometrize neighborhoods centered around it, providing an inter-
active, local version of the isometrization algorithm from [43]. Rather than modifying the entire embedding
to induce an isometry around a selected point, this view updates the region around the mouse position. To
isometrize the embedding with respect to sample i′, [43] suggest the transformation,

y(i) →
(
H(i′)

)−1

y(i)

15

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 26, 2025. ; https://doi.org/10.1101/2025.08.21.671523doi: bioRxiv preprint 

https://doi.org/10.1101/2025.08.21.671523
http://creativecommons.org/licenses/by/4.0/


811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864

For focus-plus-context interaction, we isometrize only samples near the mouse position m and smoothly
interpolate the transformation as the mouse moves between samples. We implement,

y(i) → kh1

(
y(i),m

)
ỹ(i) +

(
1− kh1

(
y(i),m

))
y(i) (4)

where,

ỹ(i) := (H∗)
−1

(
y(i) −m

)
+m (5)

H∗ =

N∑
j=1

[
kh2

(
y(j),m

)∑N
j′=1 kh2

(
y(j′),m

)]H(j). (6)

and khg denotes the Gaussian kernel with bandwidth hg and H∗ represents a local average of H(i). The
parameter h1 controls the size of the region affected by isometrization, and h2 controls the the region defining
H∗. This interactive coordinate system update is related to fisheye distortion [47], where local geometries
are deliberately distorted to focus on specfic samples.

4.8 Package software architecture

The distortions software architecture must support low-level graphical marks, like ellipses, and
interactions, like updating fragmented neighborhood links on mouseover, that are unavailable in existing
visualization software. These customizations cannot come at the cost of support for higher-level data struc-
tures from modern computational biology software. To this end, we have defined a standalone javascript
package (distortions-js, https://www.npmjs.com/package/distortions) for visual components and interac-
tions, and a separate python package (distortions, https://pypi.org/project/distortions/) for higher-level
algorithms and distortion computation. The javascript implementation is built around a DistortionPlot

class, which exports a mapping method to encode dataset fields in the visual channels from each geom* ele-
ment, as well as methods for each interaction type. All graphical marks are rendered as SVG elements on
a parent canvas. This is necessary, as standard javascript plotting libraries like vega [49] and observable

plot [42] do not support ellipse visualization. Brush events are implemented using the d3-brush library [2],
and legends are drawn using d3-legend [28].

The python package connects to distortions-js through the anywidget [31] package, allowing interac-
tive javascript execution within Jupyter and Quarto notebooks. This approach converts python dictionary
objects storing data and plot specifications into javascript data structures for visualization in the browser or
notebook cell. The embeddings can be passed in through an AnnData experimental object [62]. For intrinsic
geometry estimation, we use the megaman package [34], which is designed for scalable nonlinear dimensional-
ity reduction and supports estimation of the local metrics H(i) for each sample i. Open source code can be
found at https://github.com/krisrs1128/distortions and https://github.com/krisrs1128/distortions-js, docu-
mentation is given at https://krisrs1128.github.io/distortions/site/. We note that the packages can be used
independently.
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Fig. 6: Salient characteristics of distortion vary across hyperparameter settings. A. The t-SNE embedding
of the hydra cell atlas dataset when perplexity hyperparameter is set to 80. This embedding exaggerates the
distinction between cell type clusters. B. The analogous view when the t-SNE perplexity is set to 500. At this
hyperparameter value, the main clusters are now more overlapping, but the distances along the periphery
of the embedding are less well preserved. C. Hovering over fragmented neighborhoods near the bottom-left
of the embedding in panel A shows that neighbors are often shared between clusters. D. Hovering over a
fragmented neighborhood in Panel B shows that points near the periphery can be neighbors with points
spread throughout the visualization.
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Fig. 7: Distortion visualizations highlight problems with randomly initialized UMAP. A. UMAP embedding
of the PBMC data when applying random initialization. B. The analog of Fig 4D in the random initialization
setting. The systematically larger condition numbers λ1

λ2
correspond to more eccentric ellipses in panel A. C.

Brushing over pairs with large embedding vs. original distances highlights T-NK cell neighbors whose relative
distances are poorly preserved. These cell types are placed close to one another in the spectral initialization
of Fig 4. D. Hovering over the fragmented neighborhoods in the bottom right corner of the plot highlights
NK cells with more neighbors among monocytes and NK cells, despite their close placement to T cells. This
subtype of NK cells bridges the main NK cell cluster and the T cells in Figure 4.
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Fig. 8: Distortion metrics support comparison of UMAP and DensMAP embeddings. A. A UMAP embedding
of the C. elegans dataset, subsampled as described in the main text. Ellipses represent the local metric H(i)

across observations. B. The analogous DensMAP visualization. C. Distribution of the (log-)condition numbers

λ
(i)
1 /λ

(i)
2 for the UMAP and DensMAP embeddings. Note that the two colors are semi-transparent and

partially overlap in the range of low-condition numbers. A value of 0 indicates that the dilation/contraction is
the same in all directions, while ce larger condition numbers correspond to more extreme eccentricity; hence
this view indicates that DensMAP is more isotropic. D. The analog of panel A using “hair” graphical marks
in place of ellipses, to reduce overplotting. The orientation of each segment is orthogonal to the ellipses’ major

axes, and the length encodes the condition numbers λ
(i)
1 /λ

(i)
2 . E. The analogous “hair” plot of panel B. F.

A stacked barplot of the number of fragmented neighborhoods when applying DensMAP and UMAP when
varying the threshold parameter κ used in neighborhood definition. Across a range of thresholds, DensMAP
results in fewer fragmented neighborhoods compared to UMAP.
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Fig. 9: Integrating scDEED dubious embeddings into visualizations made with the distortions package. A.
The PBMC data with dubious cells flagged by scDEED. B. Hovering over the far left cluster reveals that the
scDEED flagged cells have neighbors lying across multiple cell types that are distant in the embedding space.
Our visualization functions are designed to accommodate alternative definitions of nonlinear embedding
distortion.

Fig. 10: A graphical illustration of strategies used to flag fragmented neighborhoods. A. In the bin-based
strategy, the original distances are partitioned into evenly-sized intervals Il. Within each bin, the interquartile
range of embedding distances is computed. Original vs. embedding distance pairs that do not fall within a
factor of σ times the IQR of the median embedding distance for that bin are flagged as outliers Ol. B. In
either the bin or window-based strategies, samples with many neighbor links belonging to ∪lOl are flagged
as being the center of a fragmented neighborhood.
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Fig. A1: A zoomed-in version of Fig 4D. We have restricted to cells with λ
(i)
j < 1. A second mode of smaller,

less eccentric monocytes is visible in this view and contrasts with those that occupy the top right region of
Fig 4D. We also see a small cluster of dendritic cells with singular values near the origin, corresponding to
the small cluster placed near T cells in Figure 4A-C.
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